

Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 1.1
Ex 1.1, 1 (ii)
Ex 1.1, 1 (iii) Important
Ex 1.1, 1 (iv)
Ex 1.1, 1 (v)
Ex 1.1, 2
Ex 1.1, 3
Ex 1.1, 4
Ex 1.1, 5 Important
Ex 1.1, 6
Ex 1.1, 7
Ex 1.1, 8
Ex 1.1, 9 (i)
Ex 1.1, 9 (ii)
Ex 1.1, 10 (i)
Ex 1.1, 10 (ii)
Ex 1.1, 10 (iii) Important You are here
Ex 1.1, 10 (iv)
Ex 1.1, 10 (v)
Ex 1.1, 11
Ex 1.1, 12 Important
Ex 1.1, 13
Ex 1.1, 14
Ex 1.1, 15 (MCQ) Important
Ex 1.1, 16 (MCQ)
Last updated at Aug. 11, 2021 by Teachoo
Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 1.1,10 Given an example of a relation. Which is (iii) Reflexive and symmetric but not transitive. Let A = {1, 2, 3}. Let relation R on set A be Let R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1)} Check Reflexive If the relation is reflexive, then (a, a) R for every a {1,2,3} Since (1, 1), (2, 2), (3, 3) R R is reflexive Check Symmetric To check whether symmetric or not, If (a, b) R, then (b, a) R Since, If (1, 2) R , then (2, 1) R & if (1, 3) R , then (3, 1) R R is symmetric. Check transitive To check whether transitive or not, If (a,b) R & (b,c) R , then (a,c) R Here, a = 1, b = 2 or 3, but there is no c (no third element) Hence ,R is not transitive Hence, relation R is reflexive and symmetric but not transitive.