Ex 1.1
Ex 1.1, 1 (ii) You are here
Ex 1.1, 1 (iii) Important
Ex 1.1, 1 (iv)
Ex 1.1, 1 (v)
Ex 1.1, 2
Ex 1.1, 3
Ex 1.1, 4
Ex 1.1, 5 Important
Ex 1.1, 6
Ex 1.1, 7
Ex 1.1, 8
Ex 1.1, 9 (i)
Ex 1.1, 9 (ii)
Ex 1.1, 10 (i)
Ex 1.1, 10 (ii)
Ex 1.1, 10 (iii) Important
Ex 1.1, 10 (iv)
Ex 1.1, 10 (v)
Ex 1.1, 11
Ex 1.1, 12 Important
Ex 1.1, 13
Ex 1.1, 14
Ex 1.1, 15 (MCQ) Important
Ex 1.1, 16 (MCQ)
Last updated at April 16, 2024 by Teachoo
Ex 1.1, 1 Determine whether each of the following relations are reflexive, symmetric and transitive: (ii) Relation R in the set N of natural numbers defined as R = {(x, y): y = x + 5 and x < 4} R = {(x, y): y = x + 5 and x < 4} Here x & y are natural numbers, & x < 4 So, we take value of x as 1 , 2, 3 ∴ R = {(1, 6), (2, 7), (3, 8)} Check Reflexive If the relation is reflexive, then (a, a) ∈ R for every a ∈ N Since (1, 1) ∉ R ∴ R is not reflexive Check symmetric To check whether symmetric or not, If (a, b) ∈ R, then (b, a) ∈ R Here (1, 6) ∈ R , but (6, 1) ∉ R ∴ R is not symmetric Check transitive To check whether transitive or not, If (a, b) ∈ R & (b, c) ∈ R , then (a, c) ∈ R There is no pair in R such that (a, b) ∈ R and (b, c) ∈ R , then (a, c) ∉ R. ∴ R is not transitive Hence, R is neither reflexive, nor symmetric, nor transitive.