Last updated at July 5, 2019 by

Transcript

Ex 1.1, 4 Show that the relation R in R defined as R = {(a, b) : a b}, is reflexive and transitive but not symmetric. R = { (a,b) : a b } Here R is set of real numbers Hence, both a and b are real numbers Check reflexive We know that a = a a a (a, a) R R is reflexive. Check symmetric To check whether symmetric or not, If (a, b) R, then (b, a) R i.e., if a b, then b a Since b a is not true for all values of a & b Hence, the given relation is not symmetric Check transitive If a b, & b c , then a c If (a, b) R & (b, c) R , then (a, c) R Hence, the given relation is transitive Hence, R = {(a, b) : a b}, is reflexive and transitive but not symmetric

Ex 1.1

Ex 1.1, 1 (i)

Ex 1.1, 1 (ii)

Ex 1.1, 1 (iii) Important

Ex 1.1, 1 (iv)

Ex 1.1, 1 (v)

Ex 1.1, 2

Ex 1.1, 3

Ex 1.1, 4 You are here

Ex 1.1, 5 Important

Ex 1.1, 6

Ex 1.1, 7

Ex 1.1, 8

Ex 1.1, 9 (i)

Ex 1.1, 9 (ii)

Ex 1.1, 10 (i)

Ex 1.1, 10 (ii)

Ex 1.1, 10 (iii) Important

Ex 1.1, 10 (iv)

Ex 1.1, 10 (v)

Ex 1.1, 11

Ex 1.1, 12 Important

Ex 1.1, 13

Ex 1.1, 14

Ex 1.1, 15 (MCQ) Important

Ex 1.1, 16 (MCQ)

Chapter 1 Class 12 Relation and Functions (Term 1)

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.