Check sibling questions

Ex 1.1, 9 - Show that each of Relation R in set A = {x: 0 <= x <= 12}

Ex 1.1, 9 - Chapter 1 Class 12 Relation and Functions - Part 2

Ex 1.1, 9 - Chapter 1 Class 12 Relation and Functions - Part 3 Ex 1.1, 9 - Chapter 1 Class 12 Relation and Functions - Part 4 Ex 1.1, 9 - Chapter 1 Class 12 Relation and Functions - Part 5 Ex 1.1, 9 - Chapter 1 Class 12 Relation and Functions - Part 6

 

 

 

 

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Ex 1.1, 9 (Introduction) Show that each of the relation R in the set A = {x ∈ Z: 0 ≤ x ≤ 12} , given by (i) R = { (a, b):|a – b| is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 in each case. Modulus function |1| = 1 |2| = 2 |0| = 0 |−1| = 1 |−3| = 3 Ex 1.1, 9 Show that each of the relation R in the set A = {x ∈ Z: 0 ≤ x ≤ 12} , given by (i) R = { (a, b):|a – b| is a multiple of 4} is an equivalence relation. Find the set of all elements related to 1 in each case. A = {x ∈ Z: 0 ≤ x ≤ 12} = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} R = {(a,b) : |a – b| is a multiple of 4} Note: Multiples of 4 are 0, 4, 8, 12 i.e. |a – b| can be 0, 4, 8, 12 only Check reflexive Since |a – a| = |0| = 0 & 0 is a multiple of 4 So, |a – a| is a multiple of 4 ∴ (a, a) ∈ R, ∴ R is reflexive. Check symmetric We know that |a – b| = |b – a| Hence, if |a – b| is a multiple of 4, then |b – a| is also a multiple of 4 Hence, If (a, b) ∈ R, then (b, a) ∈ R ∴ R is symmetric |a – b| = |–(b – a)| = |b – a| Check transitive If |a – b| is a multiple of 4, then (a – b) is a multiple of 4 Similarly, if |b – c| is a multiple of 4 , then (b – c) is a multiple of 4 Now, Sum of multiple of 4 is also a multiple of 4 a – b + b – c is a multiple of 4 ⇒ a – c is a multiple of 4 Hence, |a – c| is a multiple of 4 ∴ If |a – b| &|b – c| is a multiple of 4 , then |a – c| is a multiple of 4 i.e. If (a, b) ∈ R & (b, c) ∈ R , then (a, c) ∈ R ∴ R is transitive Rough 8 & 12 are multiple of 4 8 + 12 = 20 is also a multiple of 4 Since R is reflexive, symmetric and transitive, it is equivalence relation We need to find set of elements related to 1 R = {(a, b) : |a – b| is a multiple of 4} & A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} Here a = 1, The set of elements related to 1 are {1, 5, 9}

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.