Solve all your doubts with Teachoo Black (new monthly pack available now!)

Are you in **school**? Do you **love Teachoo?**

We would love to talk to you! Please fill this form so that we can contact you

Ex 1.1

Ex 1.1, 1 (i)

Ex 1.1, 1 (ii)

Ex 1.1, 1 (iii) Important

Ex 1.1, 1 (iv)

Ex 1.1, 1 (v)

Ex 1.1, 2 You are here

Ex 1.1, 3

Ex 1.1, 4

Ex 1.1, 5 Important

Ex 1.1, 6

Ex 1.1, 7

Ex 1.1, 8

Ex 1.1, 9 (i)

Ex 1.1, 9 (ii)

Ex 1.1, 10 (i)

Ex 1.1, 10 (ii)

Ex 1.1, 10 (iii) Important

Ex 1.1, 10 (iv)

Ex 1.1, 10 (v)

Ex 1.1, 11

Ex 1.1, 12 Important

Ex 1.1, 13

Ex 1.1, 14

Ex 1.1, 15 (MCQ) Important

Ex 1.1, 16 (MCQ)

Chapter 1 Class 12 Relation and Functions

Serial order wise

Last updated at Dec. 8, 2016 by Teachoo

Ex 1.1, 2 Show that the relation R in the set R of real numbers, defined as R = {(a, b) : a b2} is neither reflexive nor symmetric nor transitive R = {(a, b) : a b2} Checking for reflexive, If the relation is reflexive, then (a, a) R i.e. a a2 Let us check Hence, a a2 is not true for all values of a. So, the given relation it is not reflexive. Checking for symmetric, To check whether symmetric or not, If (a, b) R, then (b, a) R i.e., if a b2, then b a2 Since b a2 is not true for all values of a & b. Hence, the given relation is not symmetric Checking transitive To check whether transitive or not, If (a, b) R & (b, c) R , then (a, c) R i.e., if a b2, & b c2 then a c2 Since if a b2, & b c2 then a c2 is not true for all values of a, b, c. Hence, the given relation it is not transitive Therefore, the given relation is neither reflexive, symmetric or transitive