Definite Integration by properties - P4

Chapter 7 Class 12 Integrals
Concept wise

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

### Transcript

Misc 44 The value of β«_0^1βtan^(β1)β‘((2π₯ β 1)/(1 + π₯ β π₯^2 )) ππ₯ is equal to (A) 1 (B) 0 (C) β1 (D) π/4 Let I=β«_0^1βtan^(β1)β‘((2π₯β1)/(1 + π₯ β π₯^2 )) ππ₯ I=β«_0^1βtan^(β1)β‘[(π₯ + (π₯ β 1))/(1 + π₯(1 β π₯) )] ππ₯ I=β«_0^1βtan^(β1)β‘[(π₯ + (π₯ β 1))/(1 + π₯(π₯ β 1) )] ππ₯ Using γπ‘ππγ^(β1) π₯+γπ‘ππγ^(β1) (π¦)=γπ‘ππγ^(β1)β‘[(π₯ + π¦)/(1 β π₯π¦)] β΄ I=β«_0^1β[tan^(β1) (π₯)+tan^(β1) (π₯β1)] ππ₯ I=β«_0^1βγtan^(β1) [β(π₯β1)] γ ππ₯+β«_0^1βγtan^(β1) (βπ₯) γ ππ₯ Using The Property, P4 : β«_0^πβγπ(π₯)ππ₯=γ β«_0^πβπ(πβπ₯)ππ₯ β΄ I=β«_0^1βγtan^(β1) (1βπ₯) γ ππ₯+β«_0^1βγtan^(β1) (1βπ₯β1) γ ππ₯ I=β«_0^1βγtan^(β1) [β(π₯β1)] γ ππ₯+β«_0^1βγtan^(β1) (βπ₯) γ ππ₯ I=ββ«_0^1βγtan^(β1) (π₯β1) γ ππ₯ββ«_0^1βγtan^(β1) (π₯) γ ππ₯ tan^(β1) (βπ₯)=βtan^(β1)β‘γ(π₯)γ Adding (1) and (2) I+I =β«_0^1βγtan^(β1) (π₯) γ ππ₯+β«_0^1βγtan^(β1) (π₯β1) γ ππ₯ββ«_0^1βγtan^(β1) (π₯) γ ππ₯ββ«_0^1βγtan^(β1) (π₯β1) γ ππ₯ 2I=0 β΄ I=0 Hence, correct answer is B.

Made by

#### Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.