Check sibling questions
Chapter 7 Class 12 Integrals (Term 2)
Concept wise

Slide20.JPG

Slide21.JPG


Transcript

Ex 7.9, 1 ∫_(βˆ’1)^4β–’(π‘₯+1)𝑑π‘₯ Let F(𝒙)=∫1β–’(π‘₯+1)𝑑π‘₯ =∫1β–’γ€–π‘₯ 𝑑π‘₯γ€— +∫1β–’γ€–1 𝑑π‘₯γ€— =π‘₯^(1+1)/(1+1)+π‘₯ =𝒙^𝟐/𝟐+𝒙 Hence F(π‘₯)=π‘₯^2/2+π‘₯ ∫_(βˆ’πŸ)^πŸβ–’(𝒙+𝟏)𝒅𝒙 =𝑭(𝟏)βˆ’π‘­(βˆ’πŸ) =((1)^2/2+1)βˆ’((βˆ’1)^2/2+(βˆ’1)) =(1/2+1)βˆ’(1/2βˆ’1) =1/2+1βˆ’1/2+1 = 1/2βˆ’1/2+1+1 = 2

Davneet Singh's photo - Teacher, Engineer, Marketer

Made by

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths and Science at Teachoo.