Chapter 7 Class 12 Integrals
Concept wise

  Slide3.JPG

Slide4.JPG
Slide5.JPG


Transcript

Ex 7.9, 2 Evaluate the integrals using substitution ∫_0^(πœ‹/2)β–’γ€–βˆš(sin⁑〖" " Ο•" " γ€— ) cos^5⁑ϕ 𝑑ϕ〗 Let 𝐼=∫_0^(πœ‹/2)β–’γ€–βˆšπ‘ π‘–π‘›Ο• cos^5⁑〖ϕ 𝑑ϕ〗 γ€— 𝐼=∫_0^(πœ‹/2)β–’γ€–βˆšπ‘ π‘–π‘›Ο• cos^4⁑〖ϕ π‘π‘œπ‘ Ο• 𝑑ϕ〗 γ€— 𝐼=∫_0^(πœ‹/2)β–’γ€–βˆš(sin⁑ϕ ) (1βˆ’sin^2⁑ϕ )^2 π‘π‘œπ‘ Ο• 𝑑ϕ〗 Put 𝑑=sin⁑ϕ Differentiating w.r.t. Ο• 𝑑𝑑/𝑑ϕ=𝑑(sin⁑ϕ )/𝑑ϕ 𝑑𝑑/𝑑ϕ=cos⁑ϕ 𝑑𝑑/cos⁑ϕ =𝑑ϕ Hence, when Ο• varies form 0 to πœ‹/2 , 𝑑 varies form 0 to 1 Hence we can write the integral as 𝐼=∫_0^(πœ‹/2)β–’γ€–βˆšπ‘ π‘–π‘›Ο• (1βˆ’sin^2⁑ϕ )^2 π‘π‘œπ‘ Ο• 𝑑ϕ〗 =∫_0^1β–’γ€–βˆšπ‘‘ (1βˆ’π‘‘^2 )^2 π‘π‘œπ‘ Ο• 𝑑𝑑/π‘π‘œπ‘ Ο•γ€— =∫_0^1β–’γ€–βˆšπ‘‘ (1βˆ’π‘‘^2 )^2 𝑑𝑑〗 =∫_0^1▒〖𝑑^(1/2) (1βˆ’γ€–2𝑑〗^2+𝑑^4 )𝑑𝑑〗 =∫_0^1β–’γ€– (𝑑^(1/2)βˆ’γ€–2𝑑〗^(2 + 1/2)+𝑑^(4 + 1/2) ) 𝑑𝑑〗 =∫_0^1▒〖𝑑^(1/2) π‘‘π‘‘γ€—βˆ’2∫1▒𝑑^(3/2) 𝑑𝑑+∫1▒𝑑^(9/2) 𝑑𝑑 =[𝑑^(1/2 +1)/(1/2 +1)]_0^1βˆ’2[𝑑^(3/2 +1)/(3/2 +1)]_0^1+[𝑑^(9/2 +1)/(9/2 +1)]_0^1 =[𝑑^(3/2 )/(3/2)]_0^1βˆ’2[𝑑^(7/2 )/(7/2)]_0^1+[𝑑^(11/2 )/(11/2)]_0^1 =2/3 (1^(3/2)βˆ’0^(3/2) )βˆ’2 Γ— 2/7 (1^(7/2)βˆ’0^(7/2) )+2/11 [1^(11/2)βˆ’0^(11/2) ] =2/3βˆ’4/7+2/11 =(2 Γ— 7 Γ— 11 βˆ’ 4 Γ— 3 Γ— 11 + 2 Γ— 3 Γ—7)/(2 Γ— 7 Γ— 11) =(154 βˆ’ 132 + 42)/231 =πŸ”πŸ’/πŸπŸ‘πŸ

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.