Integration Full Chapter Explained - Integration Class 12 - Everything you need




Last updated at Dec. 20, 2019 by Teachoo
Transcript
Ex 7.8, 1 β«1_π^πβγπ₯ ππ₯γ β«1_π^πβγπ₯ ππ₯γ Putting π =π π =π β=(π β π)/π π(π₯)=π₯ Ex 7.8, 1 β«1_π^πβγπ₯ ππ₯γ β«1_π^πβγπ₯ ππ₯γ Putting π =π π =π β=(π β π)/π π(π₯)=π₯ We know that β«1_π^πβγπ₯ ππ₯γ =(πβπ) (πππ)β¬(πββ) 1/π (π(π)+π(π+β)+π(π+2β)β¦+π(π+(πβ1)β)) Hence we can write β«1_π^πβγπ₯ ππ₯γ =(πβπ) limβ¬(nββ) 1/π (π(π)+π(π+β)+π(π+2β)+β¦ +π(π+(πβ1)β) Here, π(π₯)=π₯ π(π)=π π(π+β)=π+β π (π+2β)=π+2β β¦ π(π+(πβ1)β)=π+(πβ1)β Hence, our equation becomes β΄ β«_0^πβπ₯ ππ₯ = (πβπ) (πππ)β¬(πββ) 1/π (π(π)+π(π+β)+π(π+2β)β¦+π(π+(πβ1)β)) = (πβπ) (πππ)β¬(πββ) 1/π (π+(π+β)+(π+2β)+ β¦+(π+(πβ1)β)) = (πβπ) (πππ)β¬(πββ) 1/π ( π+π+ β¦+π +β+2β+ β¦β¦+(πβ1)β) = (πβπ) (πππ)β¬(πββ) 1/π ( ππ+β (1+2+ β¦β¦β¦+(πβ1))) We know that 1+2+3+ β¦β¦+π= (π (π + 1))/2 1+2+3+ β¦β¦+πβ1= ((π β 1) (π β 1 + 1))/2 = (π (π β 1) )/2 = (πβπ) (πππ)β¬(πββ) 1/π ( ππ+(β . π(π β 1))/2) = (πβπ) (πππ)β¬(πββ) ( ππ/π+π(π β 1)β/2π) = (πβπ) (πππ)β¬(πββ) ( π+(π β 1)β/2) = (πβπ) (πππ)β¬(πββ) ( π+(π β 1)(π βπ)/(2 . π)) = (πβπ) (πππ)β¬(πββ) ( π+(π/π β 1/π) ((π β π) )/2) [ππ πππ β=(π β π)/π] = (πβπ) (πππ)β¬(πββ) ( π+(1β 1/π) ((π β π) )/2) = (πβπ)( π+(1β 1/β) ((π β π) )/2) = (πβπ)( π+(1β0) ((π β π) )/2) = (πβπ)( π+ (π β π )/2) = (πβπ)((2π + π β π )/2) = (π β π)(π + π)/2 = (π^π β π^π)/π
Definite Integral as a limit of a sum
Ex 7.8, 2 Not in Syllabus - CBSE Exams 2021
Ex 7.8, 3 Not in Syllabus - CBSE Exams 2021
Example 25 Important Not in Syllabus - CBSE Exams 2021
Ex 7.8, 4 Important Not in Syllabus - CBSE Exams 2021
Example 26 Not in Syllabus - CBSE Exams 2021
Ex 7.8, 5 Not in Syllabus - CBSE Exams 2021
Misc 40 Important Not in Syllabus - CBSE Exams 2021
Ex 7.8, 6 Important Not in Syllabus - CBSE Exams 2021
About the Author