Question 1 - Definite Integral as a limit of a sum - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Something went wrong!
The
video
couldn't load due to a technical hiccup.
But don't worry — our team is already on it, and we're working hard to get it back up ASAP.
Thanks for bearing with us!
Transcript
Question 1
β«1_π^πβγπ₯ ππ₯γ
β«1_π^πβγπ₯ ππ₯γ
Putting
π =π
π =π
π=(π β π)/π
π(π)=π₯
We know that
β«1_π^πβγπ(π₯) ππ₯γ
=(πβπ) (πππ)β¬(πββ) 1/π (π(π)+π(π+β)+π(π+2β)β¦+π(π+(πβ1)β))
Hence we can write
β«1_π^πβγπ₯ ππ₯γ
=(πβπ) limβ¬(nββ) 1/π (π(π)+π(π+β)+π(π+2β)+β¦ +π(π+(πβ1)β)
Here,
π(π)=π₯
π(π)=π
π(π+π)=π+β
π (π+ππ)=π+2β
β¦
π(π+(πβπ)π)=π+(πβ1)β
Hence, our equation becomes
β΄ β«_π^πβπ π
π
= (πβπ) (πππ)β¬(πββ) 1/π (π(π)+π(π+β)+π(π+2β)β¦+π(π+(πβ1)β))
= (πβπ) (πππ)β¬(πββ) 1/π (π+(π+β)+(π+2β)+ β¦+(π+(πβ1)β))
= (πβπ) (πππ)β¬(πββ) 1/π ( π+π+ β¦+π +β+2β+ β¦β¦+(πβ1)β)
= (πβπ) (πππ)β¬(πββ) 1/π ( ππ +β+2β+ β¦β¦+(πβ1)β)
= (πβπ) (πππ)β¬(πββ) 1/π ( ππ+β (π+π+ β¦β¦β¦+(πβπ)))
π πππππ
We know that
1+2+3+ β¦β¦+π= (π (π + 1))/2
1+2+3+ β¦β¦+πβ1= ((π β 1) (π β 1 + 1))/2
= (π (π β π) )/π
= (πβπ) (πππ)β¬(πββ) 1/π ( ππ+(π . π(π β π))/π)
= (πβπ) (πππ)β¬(πββ) ( ππ/π+π(π β 1)β/2π)
= (πβπ) (πππ)β¬(πββ) ( π+(π β 1)π/2)
= (πβπ) (πππ)β¬(πββ) ( π+(π β 1)(π βπ)/(2 . π))
= (πβπ) (πππ)β¬(πββ) ( π+(π/π β π/π) ((π β π) )/2)
[ππ πππ β=(π β π)/π]
= (πβπ) (πππ)β¬(πββ) ( π+(πβ π/π) ((π β π) )/2)
= (πβπ)( π+(1β π/β) ((π β π) )/2)
= (πβπ)( π+(1βπ) ((π β π) )/2)
= (πβπ)( π+ (π β π )/2)
= (πβπ)((2π + π β π )/2)
= (π β π)(π + π)/2
= (π^π β π^π)/π
Show More