Chapter 7 Class 12 Integrals
Concept wise

This Question was also asked in CBSE Maths Board Exam - 2020 (Question 34 - Set 65/5/1)

Ex 7.8, 4 - Integrate (x2 - x) dx by limit as a sum - Ex 7.8

Ex 7.8, 4 - Chapter 7 Class 12 Integrals - Part 2
Ex 7.8, 4 - Chapter 7 Class 12 Integrals - Part 3
Ex 7.8, 4 - Chapter 7 Class 12 Integrals - Part 4
Ex 7.8, 4 - Chapter 7 Class 12 Integrals - Part 5 Ex 7.8, 4 - Chapter 7 Class 12 Integrals - Part 6 Ex 7.8, 4 - Chapter 7 Class 12 Integrals - Part 7 Ex 7.8, 4 - Chapter 7 Class 12 Integrals - Part 8 Ex 7.8, 4 - Chapter 7 Class 12 Integrals - Part 9 Ex 7.8, 4 - Chapter 7 Class 12 Integrals - Part 10 Ex 7.8, 4 - Chapter 7 Class 12 Integrals - Part 11 Ex 7.8, 4 - Chapter 7 Class 12 Integrals - Part 12 Ex 7.8, 4 - Chapter 7 Class 12 Integrals - Part 13


Transcript

Question 4 ∫1_1^4▒(𝑥2 −𝑥)𝑑𝑥 Let I = ∫1_1^4▒(𝑥2 −𝑥)𝑑𝑥 I = ∫1_1^4▒〖 𝑥2 𝑑𝑥〗−∫1_1^4▒〖 𝑥 𝑑𝑥〗 Solving I1 and I2 separately Solving I1 ∫1_1^4▒〖𝑥2 𝑑𝑥〗 Putting 𝑎 =1 𝑏 =4 ℎ=(𝑏 − 𝑎)/𝑛 =(4 − 1)/𝑛 =3/𝑛 𝑓(𝑥)=𝑥^2 We know that ∫1_𝑎^𝑏▒〖𝑥 𝑑𝑥〗 =(𝑏−𝑎) (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑓(𝑎)+𝑓(𝑎+ℎ)+𝑓(𝑎+2ℎ)…+𝑓(𝑎+(𝑛−1)ℎ)) Hence we can write ∫1_1^4▒〖𝑥2 𝑑𝑥〗 =(4−1) (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑓(1)+𝑓(1+ℎ)+𝑓(1+2ℎ)+ …+𝑓(1+(𝑛−1)ℎ)) =3 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑓(1)+𝑓(1+ℎ)+𝑓(1+2ℎ)+ …+𝑓(1+(𝑛−1)ℎ)) Here, 𝑓(𝑥)=𝑥^2 𝑓(1)=(1)^2=1 𝑓(1+ℎ)=(1+ℎ)^2 𝑓 (1+2ℎ)=(1+2ℎ)^2 … 𝑓(1+(𝑛−1)ℎ)=(1+(𝑛−1)ℎ)^2 Hence, our equation becomes ∫1_1^4▒〖𝑥2 𝑑𝑥〗 " " =3 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑓(1)+𝑓(1+ℎ)+𝑓(1+2ℎ)+ …+𝑓(1+(𝑛−1)ℎ)) =3 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 ((1)^2+(1+ℎ)^2+(1+2ℎ)^2+ …+(1+(𝑛−1)ℎ)^2 ) =3 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (█(1^2+(1^2+ℎ^2+2ℎ)+〖(1〗^2+ (2ℎ)^2+4ℎ)+ …… @ …+(1^2+((𝑛−1)ℎ)^2+2(𝑛−1) ℎ) )) =3 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 [1^2+1^2+ … +1^2 ] + ℎ^2+(2ℎ)^2+ … +(𝑛−1)ℎ^2 + [2ℎ+4ℎ+ … +2(𝑛−1)ℎ] =3 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (〖𝑛(1)〗^2+[ℎ^2+(2)^2 . ℎ^2+ … +(𝑛−1)^2 ℎ^2 ] +[2ℎ+2×2ℎ+ … +(𝑛−1)×2ℎ] ) =3 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛(𝑛+𝒉^2 [(1)^2+(2)^2+ …+(𝑛−1)^2 ] +𝟐𝒉 [1+2+ …+(𝑛−1)]) =3 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑛+ℎ^2 [𝑛(𝑛 − 1)(2𝑛 − 1)/6]+2ℎ[𝑛(𝑛 − 1)/2] ) We know that 1^2+2^2+ …+𝑛^2= (𝑛 (𝑛 + 1)(2𝑛 + 1))/6 1^2+2^2+ ……+(𝑛−1)^2 = ((𝑛 − 1) (𝑛 −1 + 1)(2(𝑛 − 1) + 1))/6 = ((𝑛 − 1) 𝑛 (2𝑛 − 2 + 1) )/6 = (𝑛 (𝑛 − 1) (2𝑛 − 1) )/6 We know that 1+2+3+ ……+𝑛= (𝑛 (𝑛 + 1))/2 1+2+3+ ……+(𝑛−1) = ((𝑛 − 1) (𝑛 − 1 + 1))/2 = (𝑛 (𝑛 − 1) )/2 =3 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑛+ℎ^2 [𝑛(𝑛 − 1)(2𝑛 − 1)]/6+ℎ[𝑛(𝑛 − 1)] ) =3 (𝑙𝑖𝑚)┬(𝑛→∞) (𝑛/𝑛+ℎ^2 [𝑛(𝑛 − 1)(2𝑛 − 1)/6𝑛]+ℎ[𝑛(𝑛 − 1)/𝑛]) =3 (𝑙𝑖𝑚)┬(𝑛→∞) (1+ℎ^2 [(𝑛 − 1)(2𝑛 − 1)/6]+ℎ[(𝑛 − 1)]) =3 (𝑙𝑖𝑚)┬(𝑛→∞) (1+(3/𝑛)^2 (𝑛 − 1)(2𝑛 − 1)/6+(3/𝑛)(𝑛 − 1)) =3 (𝑙𝑖𝑚)┬(𝑛→∞) (1+9/𝑛^2 . (𝑛 − 1)(2𝑛 − 1)/6 +3(1 − 1/𝑛)) =3 (𝑙𝑖𝑚)┬(𝑛→∞) (1+ 9(1 − 1/𝑛)(2 − 1/𝑛)/6 +3(1 − 1/𝑛)) =3(1+ 9(1 − 1/∞)(2 − 1/∞)/6 +3(1 − 1/∞)) =3(1+ 9(1 − 0)(2 − 0)/6 +3(1 −0)) =3(1+ (9 × 1 × 2)/6 +3) =3(1+3+3) =3×7 =𝟐𝟏 Solving I2 ∫1_1^4▒〖𝑥 𝑑𝑥〗 Putting 𝑎 =1 𝑏 =4 ℎ=(𝑏 − 𝑎)/𝑛 =(4 − 1)/𝑛 =3/𝑛 𝑓(𝑥)=𝑥 We know that ∫1_𝑎^𝑏▒〖𝑥 𝑑𝑥〗 =(𝑏−𝑎) (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑓(𝑎)+𝑓(𝑎+ℎ)+𝑓(𝑎+2ℎ)…+𝑓(𝑎+(𝑛−1)ℎ)) Hence we can write ∫1_1^4▒〖𝑥 𝑑𝑥〗 =(4−1) lim┬(n→∞) 1/𝑛 (𝑓(1)+𝑓(1+ℎ)+𝑓(1+2ℎ)+… +𝑓(1+(𝑛−1)ℎ) =3 lim┬(n→∞) 1/𝑛 (𝑓(1)+𝑓(1+ℎ)+𝑓(1+2ℎ)+… +𝑓(1+(𝑛−1)ℎ) Here, 𝑓(𝑥)=𝑥 𝑓(1)=1 𝑓(1+ℎ)=1+ℎ 𝑓 (1+2ℎ)=1+2ℎ 𝑓(1+(𝑛−1)ℎ)=1+(𝑛−1)ℎ Hence, our equation becomes ∫_1^4▒𝑥 𝑑𝑥 =3 lim┬(n→∞) 1/𝑛 (𝑓(1)+𝑓(1+ℎ)+𝑓(1+2ℎ)+… +𝑓(1+(𝑛−1)ℎ) = 3 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (1+(1+ℎ)+(1+2ℎ)+ …+(1+(𝑛−1)ℎ)) = 3 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (1+1+ …+1 +ℎ+2ℎ+ ……+(𝑛−1)ℎ) = 3 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 ( 𝑛\ ×1+ℎ (1+2+ ………+(𝑛−1))) We know that 1+2+3+ ……+𝑛= (𝑛 (𝑛 + 1))/2 1+2+3+ ……+𝑛−1= ((𝑛 − 1) (𝑛 − 1 + 1))/2 = (𝑛 (𝑛 − 1) )/2 = 3 (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 ( 𝑛+(ℎ . 𝑛(𝑛 − 1))/2) = 3 (𝑙𝑖𝑚)┬(𝑛→∞) ( 𝑛/𝑛+𝑛(𝑛 − 1)ℎ/2𝑛) = 3 (𝑙𝑖𝑚)┬(𝑛→∞) ( 1+(𝑛 − 1)ℎ/2) = 3 (𝑙𝑖𝑚)┬(𝑛→∞) ( 1+(𝑛 − 1)3/(2 . 𝑛)) = 3 (𝑙𝑖𝑚)┬(𝑛→∞) ( 1+(𝑛/𝑛 − 1/𝑛) 3/2) [𝑈𝑠𝑖𝑛𝑔 ℎ=3/𝑛] = 3 (𝑙𝑖𝑚)┬(𝑛→∞) ( 1+(1− 1/𝑛) (3 )/2) = 3( 1+(1− 1/∞) (3 )/2) = 3( 1+(1−0) 3/2) = 3(1+ (3 )/2) = 3((5 )/2) = 𝟏𝟓/𝟐 Putting the values of I1 and I2 in I ∴ "I = " ∫1_1^4▒〖 𝑥2 𝑑𝑥〗−∫1_1^4▒〖 𝑥 𝑑𝑥〗 = 21 − 15/2 = (42 − 15)/2 = 𝟐𝟕/𝟐

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.