Chapter 7 Class 12 Integrals
Concept wise

Slide51.JPG

Slide52.JPG


Transcript

Ex 7.10, 19 Show that ∫_0^𝑎▒𝑓(𝑥) 𝑔 (𝑥) 𝑑𝑥=2∫_0^𝑎▒𝑓(𝑥) 𝑑𝑥, if f and g are defined as 𝑓(𝑥)=𝑓(𝑎−𝑥) and 𝑔(𝑥)+𝑔(𝑎−𝑥)=4 Let I =∫_0^𝑎▒𝑓(𝑥) 𝑔(𝑥) 𝑑𝑥 I =∫_0^𝑎▒𝑓(𝑥) [4−𝑔(𝑎−𝑥)] 𝑑𝑥 I = ∫_0^𝑎▒[4.𝑓(𝑥)−𝑓(𝑥)𝑔(𝑎−𝑥)] 𝑑𝑥 I = 4∫_0^𝑎▒〖𝑓(𝑥)𝑑𝑥−∫_0^𝑎▒〖𝑓(𝑥) 𝑔(𝑎−𝑥) 〗〗 𝑑𝑥 I = 4∫_0^𝑎▒〖𝑓(𝑥)𝑑𝑥−∫_0^𝑎▒〖𝑓(𝑎−𝑥) 𝑔(𝑎−(𝑎−𝑥)) 〗〗 𝑑𝑥 I = 4∫_0^𝑎▒〖𝑓(𝑥)𝑑𝑥−∫_0^𝑎▒〖𝑓(𝑥) 𝑔(𝑥) 〗〗 𝑑𝑥 I =4∫_0^𝑎▒〖𝑓(𝑥)𝑑𝑥−I〗 I +I=4∫_0^𝑎▒𝑓(𝑥)𝑑𝑥 2I=4∫_0^𝑎▒𝑓(𝑥)𝑑𝑥 I=2∫_0^𝑎▒𝑓(𝑥)𝑑𝑥 ∴ ∫_0^𝑎▒〖𝑓(𝑥) 𝑔(𝑥) 〗 𝑑𝑥=2∫_0^𝑎▒𝑓(𝑥)𝑑𝑥 Hence Proved

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.