Check sibling questions
Chapter 7 Class 12 Integrals
Concept wise

Misc 32 - Definite integral x tan x / sec x + tanx - Miscellaneous

Misc 32 - Chapter 7 Class 12 Integrals - Part 2
Misc 32 - Chapter 7 Class 12 Integrals - Part 3 Misc 32 - Chapter 7 Class 12 Integrals - Part 4 Misc 32 - Chapter 7 Class 12 Integrals - Part 5

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Question 2 Evaluate the definite integral ∫_0^πœ‹β–’(π‘₯ tan⁑π‘₯ )/(sec⁑π‘₯ +γ€– tan〗⁑π‘₯ ) 𝑑π‘₯ Let I=∫_0^πœ‹β–’(π‘₯ tan⁑π‘₯ )/(sec⁑π‘₯ +γ€– tan〗⁑π‘₯ ) 𝑑π‘₯ ∴ I=∫_0^πœ‹β–’((πœ‹ βˆ’ π‘₯) tan⁑〖 (πœ‹ βˆ’ π‘₯)γ€—)/(sec⁑(πœ‹ βˆ’ π‘₯) +γ€– tan〗⁑(πœ‹ βˆ’ π‘₯) ) 𝑑π‘₯ I=∫_0^πœ‹β–’((πœ‹ βˆ’ π‘₯)(βˆ’tan⁑〖 π‘₯γ€—) )/((βˆ’sec⁑〖 π‘₯γ€—) + γ€–( βˆ’tan〗⁑π‘₯)) 𝑑π‘₯ I=∫_0^πœ‹β–’(βˆ’(πœ‹ βˆ’ π‘₯) tan⁑π‘₯ )/(βˆ’(sec⁑π‘₯ +γ€– tan〗⁑π‘₯)) 𝑑π‘₯ Using The Property, P4 P4 : ∫_0^π‘Žβ–’γ€–π‘“(π‘₯)𝑑π‘₯=γ€— ∫_0^π‘Žβ–’π‘“(π‘Žβˆ’π‘₯)𝑑π‘₯ I=∫_0^πœ‹β–’((πœ‹ βˆ’ π‘₯) tan⁑π‘₯ )/((sec⁑π‘₯ +γ€– tan〗⁑π‘₯)) 𝑑π‘₯ Adding (1) and (2) i.e. (1) + (2) I+I=∫_0^πœ‹β–’(π‘₯ tan⁑π‘₯ )/(sec⁑π‘₯ +γ€– tan〗⁑π‘₯ ) 𝑑π‘₯+∫_0^πœ‹β–’(πœ‹ tan⁑π‘₯ βˆ’ π‘₯ tan⁑π‘₯)/(sec⁑π‘₯ +γ€– tan〗⁑π‘₯ ) 𝑑π‘₯ 2I=∫_0^πœ‹β–’(π‘₯ tan⁑π‘₯ + πœ‹ tan⁑π‘₯ βˆ’ π‘₯ tan⁑π‘₯)/(sec⁑π‘₯ +γ€– tan〗⁑π‘₯ ) 𝑑π‘₯ 2I=∫_0^πœ‹β–’(πœ‹ tan⁑π‘₯)/(sec⁑π‘₯ +γ€– tan〗⁑π‘₯ ) 𝑑π‘₯ 2I=πœ‹βˆ«_0^πœ‹β–’tan⁑π‘₯/(sec⁑π‘₯ +γ€– tan〗⁑π‘₯ ) 𝑑π‘₯ I=πœ‹/2 ∫_0^πœ‹β–’tan⁑π‘₯/(sec⁑π‘₯ +γ€– tan〗⁑π‘₯ ) 𝑑π‘₯ =πœ‹/2 ∫_0^πœ‹β–’(sin⁑π‘₯/cos⁑π‘₯ )/(1/cos⁑π‘₯ + sin⁑π‘₯/cos⁑π‘₯ ) 𝑑π‘₯ =πœ‹/2 ∫_0^πœ‹β–’sin⁑π‘₯/(1 + sin⁑π‘₯ ) 𝑑π‘₯ =πœ‹/2 ∫_0^πœ‹β–’(sin⁑π‘₯ + 1 βˆ’ 1)/(1 + sin⁑π‘₯ ) 𝑑π‘₯ =πœ‹/2 ∫_0^πœ‹β–’[(1 + sin⁑π‘₯)/(1 + sin⁑π‘₯ ) βˆ’1/(1 + sin⁑π‘₯ )] 𝑑π‘₯ =πœ‹/2 ∫_0^πœ‹β–’[1 βˆ’1/(1 + sin⁑π‘₯ )] 𝑑π‘₯ =πœ‹/2 [∫_0^πœ‹β–’1 𝑑π‘₯βˆ’βˆ«_0^πœ‹β–’1/(1 + sin⁑π‘₯ ) 𝑑π‘₯] =πœ‹/2 [[π‘₯]_0^πœ‹βˆ’βˆ«_0^πœ‹β–’1/(1 + sin⁑π‘₯ ) ((1 βˆ’ sin⁑π‘₯)/(1 βˆ’ sin⁑π‘₯ )) 𝑑π‘₯] =πœ‹/2 [[πœ‹βˆ’0]βˆ’βˆ«_0^πœ‹β–’(1 βˆ’ sin⁑π‘₯)/(1 βˆ’ sin^2⁑π‘₯ ) 𝑑π‘₯] =πœ‹/2 [πœ‹βˆ’βˆ«_0^πœ‹β–’(1 βˆ’ sin⁑π‘₯)/cos^2⁑π‘₯ 𝑑π‘₯] =πœ‹/2 [πœ‹βˆ’βˆ«_0^πœ‹β–’[1/cos^2⁑π‘₯ βˆ’ sin⁑π‘₯/cos^2⁑π‘₯ ] 𝑑π‘₯] =πœ‹/2 {πœ‹βˆ’βˆ«_0^πœ‹β–’[sec^2⁑π‘₯βˆ’tan⁑π‘₯ sec⁑π‘₯ ] 𝑑π‘₯} =πœ‹/2 {πœ‹βˆ’βˆ«_0^πœ‹β–’sec^2⁑π‘₯ 𝑑π‘₯+∫_0^πœ‹β–’γ€–tan⁑π‘₯ sec⁑π‘₯ γ€— 𝑑π‘₯} =πœ‹/2 [πœ‹βˆ’[tan⁑π‘₯ ]_0^πœ‹+[sec⁑π‘₯ ]_0^πœ‹ ] =πœ‹/2 {πœ‹βˆ’[tan⁑〖(πœ‹)βˆ’tan⁑(0) γ€— ]+[sec (πœ‹)βˆ’sec⁑(0) ]} =πœ‹/2 {πœ‹βˆ’[0βˆ’0]+[βˆ’1βˆ’1]} =πœ‹/2 {πœ‹βˆ’0+[βˆ’2]} =𝝅/𝟐 (π…βˆ’πŸ)

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.