





Introducing your new favourite teacher - Teachoo Black, at only βΉ83 per month
Minima/ maxima (statement questions) - Geometry questions
Ex 6.5, 27 (MCQ)
Example 35 Important
Example 41 Important
Example 36
Misc 12 Important
Example 37 Important
Misc 9 Important
Ex 6.5,21
Ex 6.5, 20 Important
Ex 6.5,24 Important
Ex 6.5,25 Important
Ex 6.5,26 Important
Ex 6.5,22 Important
Misc 10
Misc 11 Important
Ex 6.5,17
Ex 6.5,18 Important
Example 50 Important
Ex 6.5,19 Important
Misc 8 Important
Ex 6.5,23 Important
Misc 15 Important
Misc 17 Important You are here
Example 38 Important
Misc 18 Important
Minima/ maxima (statement questions) - Geometry questions
Last updated at April 19, 2021 by Teachoo
Misc 17 Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is 2π /β3 . Also find the maximum volume.Given Radius of sphere = R Let h be the height & π be the diameter of cylinder In β π¨π©πͺ Using Pythagoras theorem (πΆπ΅)^2+(π΄π΅)^2=(π΄πΆ)^2 h2 + π₯^2=(π +π )^2 h2 + π₯2 =(2π )^2 h2 + π₯2 = 4R2 π2 = 4R2 β h2 We need to find maximum volume of cylinder Let V be the volume of cylinder V = Ο (πππππ’π )^2Γ(βπππβπ‘) V = Ο (π₯/2)^2Γ β V = Ο Γ π₯^2/4Γ β V = Ο ((4π ^2 β β^2 ))/4 Γ β V = (4π ^2 πβ)/4β(πβ^3)/4 V = ΟhR2 β (π π^π)/π Differentiating w.r.t π ππ/πβ=π(πβπ ^2 β πβ^3/4)/πβ ππ/πβ= ΟR2 π(β)/πββπ/4 π(β^3 )/πβ ππ΅/πβ= ΟR2 β π/4 (3β^2 ) ππ/πβ= ΟR2 β 3π/4 h2 Putting π π½/π π=π Ο R2 β 3/4 π β^2=0 3/4 πβ^2=ππ ^2 h2 = (ππ ^2)/(3/4 π) h2 = (4π ^2)/3 h =β((4π ^2)/3) h = ππΉ/βπ Finding (π ^π π½)/(π π^π ) ππ/πβ=ππ ^2β3/(4 ) π β^2 Differentiating w.r.t. h (π^2 π)/(πβ^2 )= π(ππ ^2 β 3/4 πβ^2 )/πβ (π^2 π)/(πβ^2 )= 0 β 3π/4 Γ2β (π ^π π½)/(π π^π )=(βππ π)/π Since (π ^π π½)/(π π^π )<π for h = 2π /β3 β΄ Volume is maximum for h = 2π /β3 We also need to find Maximum Volume V = ΟhR2 β (πβ^3)/4 V = ΟR2 Γ 2π /β3 β π/4 Γ (2π /β3)^3 V = (2ππ ^3)/β3 β π/4 Γ(8π ^3)/(3β3) V = (2ππ ^3)/β3 β (2ππ ^3)/(3β3) V = (2ππ ^3)/β3 (1β1/3) V = (2ππ ^3)/β3 Γ2/3 V = (ππ πΉ^π)/(πβπ) cubic unit