








Introducing your new favourite teacher - Teachoo Black, at only βΉ83 per month
Minima/ maxima (statement questions) - Geometry questions
Ex 6.5, 27 (MCQ)
Example 35 Important
Example 41 Important
Example 36
Misc 12 Important You are here
Example 37 Important
Misc 9 Important
Ex 6.5,21
Ex 6.5, 20 Important
Ex 6.5,24 Important
Ex 6.5,25 Important
Ex 6.5,26 Important
Ex 6.5,22 Important
Misc 10
Misc 11 Important
Ex 6.5,17
Ex 6.5,18 Important
Example 50 Important
Ex 6.5,19 Important
Misc 8 Important
Ex 6.5,23 Important
Misc 15 Important
Misc 17 Important
Example 38 Important
Misc 18 Important
Minima/ maxima (statement questions) - Geometry questions
Last updated at April 19, 2021 by Teachoo
Misc 12 A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle. Show that the minimum length of the hypotenuse is γγ(πγ^(2/3) + π^(2/3)) γ^(3/2)Let P be the point on the hypotenuse AC Given point P is at distance a & b from sides of triangle Letβs construct PL β₯ AB & PM β₯ BC β΄ PL = a & PM = b Let β ACB = ΞΈ Thus, β APL = ΞΈ We need to find maximum length of the hypotenuse Let l be the length of the hypotenuse , β΄ l = AP + PC In β π¨π·π³ cos ΞΈ = (ππππ ππππππππ‘ π‘π π )/(π»π¦πππ‘πππ’π π ) cos ΞΈ = ππΏ/π΄π cos ΞΈ = π/π΄π AP = π/cosβ‘π AP = π πππβ‘π½ In β π·π΄πͺ sin ΞΈ = (ππππ πππππ ππ‘π π‘π π)/(π»π¦πππ‘πππ’π π ) sin ΞΈ = ππ/ππΆ sin ΞΈ = (π )/ππΆ PC = π/sinβ‘π PC = π πππππ π½ Now, l = AP + PC l = a sec ΞΈ + b cosec ΞΈ Differentiating w.r.t ΞΈ π π/π π½=π(π secβ‘γπ + π πππ ππ πγ )/ππ ππ/ππ= a sec ΞΈ tan ΞΈ β b cosec ΞΈ cot ΞΈ Putting π π/π π½=π a sec ΞΈ tan ΞΈ β b cosec ΞΈ cot ΞΈ = 0 a 1/cosβ‘π . sinβ‘π/γ cosγβ‘π βπ . 1/sinβ‘γπ γ Γ cosβ‘π/sinβ‘π =0 (π sinβ‘π)/cos^2β‘π β(π cosβ‘π)/sin^2β‘π =0 (π sinβ‘π)/cos^2β‘π = (π cosβ‘π)/sin^2β‘π a sin ΞΈ Γ sin2 ΞΈ = b cos ΞΈ cos2 ΞΈ a sin3 ΞΈ = b cos3 ΞΈ sin^3β‘π/cos^3β‘π = π/π tan3 ΞΈ = π/π tan ΞΈ = (π/π)^(π/π) Finding (π ^π π)/(π ^π π½) ππ/ππ=π secβ‘γΞΈ tanβ‘πβπ πππ ππ π cotβ‘π γ Differentiating w.rt ΞΈ (π^2 π)/(π^2 π)= π(π secβ‘γπ tanβ‘γπ β π πππ πππ cotβ‘π γ γ )/ππ = a π(secβ‘γπ tanβ‘π γ )/ππβπ π(πππ ππ π cotβ‘π )/ππ = a((secβ‘π )^β² tanβ‘π+(tanβ‘π )^β² secβ‘π )βπ((πππ ππ π)^β² cotβ‘π+(cotβ‘π )^β² πππ ππ π) = a (secβ‘π.tanβ‘γπ.tanβ‘π+sec^2β‘γπ.secβ‘π γ γ )βπ((βπππ ππ π.cotβ‘π ) cotβ‘π+(βπππ ππ^2 π).πππ ππ π) = a(secβ‘γπ tan^2β‘γπ+sec^3β‘π γ γ )βπ(βπππ ππ π cot^2β‘γπβπππ ππ^3 πγ ) Using Product Rule as (π’π£)^β²=π’^β² π£+π£^β² π’ = a sec ΞΈ (γπππγ^πβ‘γπ½+γπππγ^πβ‘π½ γ )+π πππ ππ π(γγπππγ^π π½γβ‘γ+πππππ^π π½γ ) Here, square terms β (γπππγ^πβ‘γπ½+γπππγ^πβ‘π½ γ ) (γγπππγ^π π½γβ‘γ+πππππ^π π½γ ) are always positive And Since ΞΈ is acute, i.e. 0 < ΞΈ < π/2 β΄ ΞΈ lies in 1st quadrant So, sec ΞΈ & cosec ΞΈ will be positive Thus, (π ^π π)/(π ^π π½) > 0 at tan ΞΈ = (π/π)^(1/3) β΄ l is least when tan ΞΈ = (π/π)^(1/3) Now, tan ΞΈ = π^(π/π)/π^(π/π) tan ΞΈ = π»πππβπ‘/π΅ππ π Height = π^(π/π) & base π^(π/π) Using Pythagoras theorem π»π¦πππ‘πππ’π π^2=π»πππβπ‘^2+π΅ππ π^2 π»π¦πππ‘πππ’π π^2=(π^(1/3) )^2+(π^(1/3) )^2 π―πππππππππ = β(π^(π/π) + π^(π/π) ) Least value of l Least value of l = a sec ΞΈ + b cosec ΞΈ = a Γ (π―πππππππππ )/(π©πππ )+π "Γ " (π―πππππππππ )/(π―πππππ ) = a Γ β(π^(2/3) + π^(2/3) )/π^(1/3) +b Γβ(π^(2/3) + π^(2/3) )/π^(1/3) l = β(π^(2/3)+π^(2/3) ) (π^(1 β 1/3)+π^(1 β 1/3) ) l = β(π^(2/3)+π^(2/3) ) (π^(2/3)+π^(2/3) ) l = (π^(2/3)+π^(2/3) )^(1/2 + 1) l = (π^(π/π)+π^(π/π) )^(π/π) Hence l = (π^(π/π)+π^(π/π) )^(π/π) Hence proved..