






Introducing your new favourite teacher - Teachoo Black, at only βΉ83 per month
Minima/ maxima (statement questions) - Geometry questions
Ex 6.5, 27 (MCQ)
Example 35 Important
Example 41 Important
Example 36
Misc 12 Important
Example 37 Important
Misc 9 Important
Ex 6.5,21
Ex 6.5, 20 Important
Ex 6.5,24 Important
Ex 6.5,25 Important
Ex 6.5,26 Important
Ex 6.5,22 Important
Misc 10
Misc 11 Important
Ex 6.5,17
Ex 6.5,18 Important
Example 50 Important
Ex 6.5,19 Important
Misc 8 Important
Ex 6.5,23 Important
Misc 15 Important You are here
Misc 17 Important
Example 38 Important
Misc 18 Important
Minima/ maxima (statement questions) - Geometry questions
Last updated at April 19, 2021 by Teachoo
Misc 15 Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is 4π/3 . Given, Radius of sphere = r Let R be the radius of the cone and H be its height. Let β BOC = ΞΈ Now, AC = AO + OC H = r + r cos ΞΈ H = r (1 + cos ΞΈ) And, R = r sin ΞΈ We need to maximize volume of cone. Volume of the cone is V = 1/3 ππ ^2 π» V = 1/3 ππ^2 sin^2β‘"ΞΈ" r (1 + cos ΞΈ) V = π/π π π^π γπππγ^πβ‘"ΞΈ" (1 + cos ΞΈ) Finding π π½/π π½ ππ/ππ = 1/3 ππ^3 (π[sin^2β‘γΞΈ γ (1 + cosβ‘ΞΈ))/ππ ππ/ππ = 1/3 ππ^3 [2 sinβ‘γ"ΞΈ" cosβ‘γ"ΞΈ" (1+cosβ‘γ"ΞΈ" )+sin^2β‘γ"ΞΈ" (βsinβ‘γ"ΞΈ" )γ γ γ γ γ ] ππ/ππ = 1/3 ππ^3 (2 sinβ‘γ"ΞΈ" cosβ‘γ"ΞΈ" (1+cosβ‘γ"ΞΈ" )βsin^3β‘"ΞΈ" γ γ γ ) ππ/ππ = 1/3 ππ^3 (2 sinβ‘γ"ΞΈ" cosβ‘γ"ΞΈ" (1+cosβ‘γ"ΞΈ" )βsin^3β‘"ΞΈ" γ γ γ ) ππ/ππ = 1/3 ππ^3 sin ΞΈ (2 cosβ‘γ"ΞΈ" +γ2 cos^2γβ‘γ"ΞΈ" βγπππγ^πβ‘"ΞΈ" γ γ ) ππ/ππ = 1/3 ππ^3 sin ΞΈ (2 cosβ‘γ"ΞΈ" +γ2 cos^2γβ‘γ"ΞΈ" β(πβγπππγ^πβ‘"ΞΈ" γ γ)) ππ/ππ = 1/3 ππ^3 sin ΞΈ (π γπππγ^πβ‘γ"ΞΈ" +γπ πππγβ‘γ"ΞΈ" βπγ γ ) ππ/ππ = 1/3 ππ^3 sin ΞΈ (π γπππγ^πβ‘γ"ΞΈ" +γπ πππγβ‘π½ γ βπππβ‘π½ βπ) ππ/ππ = 1/3 ππ^3 sin ΞΈ (3 γπππ γβ‘"ΞΈ" (cosβ‘π+1)β1(cosβ‘π+1)) ππ/ππ = 1/3 ππ^3 sin ΞΈ (3 πππ β‘γ"ΞΈ" β1γ )(πππ β‘γ"ΞΈ" +1γ ) Putting π π½/π π½ = 0 1/3 ππ^3 sin ΞΈ (πππ β‘γ"ΞΈ" +1γ ) (3 πππ β‘γ"ΞΈ" β1γ ) = 0 π¬π’π§ ΞΈ (cos ΞΈ + 1) (3 cos "ΞΈ" β 1) = 0 π¬π’π§ ΞΈ = 0 ΞΈ = 0Β° ΞΈ cannot be 0Β° for cone ππ¨π¬ ΞΈ + 1 = 0 cos ΞΈ = β1 For cone, 0Β° < ΞΈ < 90Β° & cos ΞΈ is negative in 2nd & 3rd quadrant. So cos ΞΈ = β1 is not possible π ππ¨π¬ ΞΈ β 1 = 0 cos ΞΈ = 1/3 ΞΈ = cosβ1 1/3 cos ΞΈ = π/π is possible So, πππβ‘"ΞΈ" = π/π Thus, H = r (1 + cos ΞΈ) H = r ("1 + " 1/3) H = ππ/π Finding (π ^π π½)/(π π½^π ) ππ/ππ = (1/3 ππ^3 sinβ‘π (3 cos2 π + 2 cosβ‘πβ 1)) = 1/3 ππ^3 [cosβ‘π (3 cos^2β‘π+2 cosβ‘πβ1)+sinβ‘π (6 cosβ‘π (βπ ππ)β2 sinβ‘π )] = 1/3 ππ^3 [3 cos^3β‘π+2 cos^2β‘πβcosβ‘π+sinβ‘π (β6 cosβ‘π sinβ‘πβ2 sinβ‘π )] = 1/3 ππ^3 [3 cos^2β‘π+2 cos^2β‘πβcosβ‘πβ6 sin^2β‘π cosβ‘πβ2 sin^2β‘π ] Now, ππ¨π¬β‘π½=π/π And sin2 "ΞΈ" = 1 β cos2 "ΞΈ" = 1 β (1/3)^2= 1 β 1/9 = π/π Putting values in (π ^π π½)/(π π½^π ) (π^2 π)/(ππ^2 ) = 1/3 ππ^3 [3(1/3)^3+2(1/3)^2β1/3β6(1/3)(8/9)β2(8/9)] = 1/3 ππ^3 [3(1/27)+2(1/9)β1/3β6(8/27)β2(8/9)] = 1/3 ππ^3 [1/9+ 2/9β1/3β16/9β16/9] = 1/3 ππ^3 [(β32)/9] = (βπππ π^π)/ππ Thus, (π^2 π)/(ππ^2 ) < 0 for ππ¨π¬β‘π½=π/π So, V is maximum for ππ¨π¬β‘π½=π/π Hence, altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is ππ/π .