





Introducing your new favourite teacher - Teachoo Black, at only βΉ83 per month
Minima/ maxima (statement questions) - Geometry questions
Ex 6.5, 27 (MCQ)
Example 35 Important
Example 41 Important
Example 36 You are here
Misc 12 Important
Example 37 Important
Misc 9 Important
Ex 6.5,21
Ex 6.5, 20 Important
Ex 6.5,24 Important
Ex 6.5,25 Important
Ex 6.5,26 Important
Ex 6.5,22 Important
Misc 10
Misc 11 Important
Ex 6.5,17
Ex 6.5,18 Important
Example 50 Important
Ex 6.5,19 Important
Misc 8 Important
Ex 6.5,23 Important
Misc 15 Important
Misc 17 Important
Example 38 Important
Misc 18 Important
Minima/ maxima (statement questions) - Geometry questions
Last updated at April 19, 2021 by Teachoo
Example 36 Let AP and BQ be two vertical poles at points A and B, respectively. If AP = 16 m, BQ = 22 m and AB = 20 m, then find the distance of a point R on AB from the point A such that RP2 + RQ2 is minimumGiven AP & BQ be two poles where AP = 16m, BQ = 22m & AB = 20m Let R be a point on AB Let AR = π m. RB = AB β AR RB = 20 β π Here, β A = 90Β° & β B = 90Β° as they are vertical poles In βARP , Using Pythagoras theorem (Hypotenuse)2 = (Base)2 + (Height)2 RP2 = AR2 + AP2 RP2 = x2 + 162 In βBRQ , Using Pythagoras theorem (Hypotenuse)2 = (Base)2 + (Height)2 RQ2 = RB2 + BQ2 RQ2 = (20 β x)2 + 222 We need to find distance of R on AB from point A such that RP2 + RQ2 is minimum i.e. we need to find π such that RP2 + RQ2 is minimum In βARP , Using Pythagoras theorem (Hypotenuse)2 = (Base)2 + (Height)2 RP2 = AR2 + AP2 RP2 = x2 + 162 In βBRQ , Using Pythagoras theorem (Hypotenuse)2 = (Base)2 + (Height)2 RQ2 = RB2 + BQ2 RQ2 = (20 β x)2 + 222 We need to find distance of R on AB from point A such that RP2 + RQ2 is maximum i.e. we need to find π₯ such that RP2 + RQ2 is maximum Let S(x) = RP2 + RQ2 From (1) & (2) S(x) = π₯^2+(16)^2+(20βπ₯)^2+(22)^2 = π₯^2+(16)^2+(20βπ₯)^2+(22)^2 = π₯^2+256+((20)^2+(π₯)^2β2(20)(π₯))+484 = π₯^2+256+(400+π₯^2β40π₯ )+484 = γππγ^πβπππ+ππππ Finding Sβ(π) Sβ(π₯)=π(2π₯^2 β 40π₯ + 1140)/ππ₯ Sβ(π₯)=4π₯β40+0 Sβ(π₯)=4(π₯β10) Putting Sβ(π)=π 4(π₯β10)=0 π₯β10=0 π=ππ Finding Sββ(π₯) Sββ(π₯)=4 π(π₯ β 10)/ππ₯ Sββ(π₯)=4(1β0) Sββ(π₯)=4 Since Sββ(π₯)>0 at π₯=10 β΄ π=ππ is point of minima Hence, S(π₯) is minimum when π₯=10 Thus, the distance of R from A on AB is AR = x = 10 π