Slide30.JPG

 

 

Slide31.JPG

 

 


Transcript

Example 40 (Method 1) Differentiate the following 𝑀.π‘Ÿ.𝑑. π‘₯. (i) cos^(βˆ’1) (sin⁑π‘₯) Let 𝑓(π‘₯) = cos^(βˆ’1) (sin⁑π‘₯) 𝑓(π‘₯) = cos^(βˆ’1) (γ€–cos 〗⁑(πœ‹/2 βˆ’π‘₯) ) 𝒇(𝒙) = 𝝅/𝟐 βˆ’π’™ Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑓’(π‘₯) = (𝑑 (πœ‹/2))/𝑑π‘₯ βˆ’ (𝑑(π‘₯))/𝑑π‘₯ 𝑓’(π‘₯) = 0 βˆ’ 1 𝒇’(𝒙) = βˆ’ 1(𝐴𝑠 γ€– 𝑠𝑖𝑛 πœƒ 〗⁑〖=γ€–π‘π‘œπ‘  〗⁑〖(πœ‹/2 βˆ’π‘₯)γ€— γ€— ) ("As " (𝑑(π‘₯))/𝑑π‘₯ " = 1 & " πœ‹/2 " is constant" ) Example 40 (Method 2) Differentiate the following 𝑀.π‘Ÿ.𝑑. π‘₯. (i) cos^(βˆ’1) (sin⁑π‘₯) Let 𝑓(π‘₯) = cos^(βˆ’1) (sin⁑π‘₯) Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑓′(π‘₯) = (βˆ’1)/√(1 βˆ’ γ€–(sin⁑π‘₯)γ€—^2 ) Γ— (sin⁑π‘₯ )^β€² 𝑓′(π‘₯) = (βˆ’1)/√(1 βˆ’ sin^2⁑π‘₯ ) Γ—cos⁑π‘₯ 𝑓′(π‘₯) = (βˆ’1)/√(cos^2⁑π‘₯ ) Γ—cos⁑π‘₯ 𝑓′(π‘₯) = (βˆ’1)/cos⁑π‘₯ Γ—cos⁑π‘₯ 𝒇’(𝒙) = βˆ’1

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.