Check sibling questions

Ex 5.5, 12 - Find dy/dx, xy + yx = 1 - Class 12 CBSE NCERT

Ex 5.5, 12 - Chapter 5 Class 12 Continuity and Differentiability - Part 2
Ex 5.5, 12 - Chapter 5 Class 12 Continuity and Differentiability - Part 3 Ex 5.5, 12 - Chapter 5 Class 12 Continuity and Differentiability - Part 4 Ex 5.5, 12 - Chapter 5 Class 12 Continuity and Differentiability - Part 5 Ex 5.5, 12 - Chapter 5 Class 12 Continuity and Differentiability - Part 6 Ex 5.5, 12 - Chapter 5 Class 12 Continuity and Differentiability - Part 7

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Ex 5.5, 12 Find 𝑑𝑦/𝑑π‘₯ of the functions in, π‘₯^𝑦 + 𝑦^π‘₯ = 1 π‘₯^𝑦 + 𝑦^π‘₯ = 1 Let 𝑒 = π‘₯^𝑦 , 𝑣 = 𝑦^π‘₯ Hence, 𝑒+𝑣=1 Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯. (𝑑(𝑣⁑〖+ 𝑒〗))/𝑑π‘₯ = 𝑑(1)/𝑑π‘₯ 𝑑𝑣/𝑑π‘₯ + 𝑑𝑒/𝑑π‘₯ = 0 (Derivative of constant is 0) Calculating 𝒅𝒗/𝒅𝒙 𝑣=π‘₯^𝑦 Taking log both sides log⁑𝑣=log⁑〖 (π‘₯^𝑦)" " γ€— log⁑𝑣=〖𝑦. log〗⁑π‘₯" " Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯ (𝑑(log⁑𝑣))/𝑑π‘₯ = (𝑑(𝑦 . log⁑π‘₯))/𝑑π‘₯ (𝑑(log⁑𝑣))/𝑑π‘₯ (𝑑𝑣/𝑑𝑣) = 𝑑(𝑦 log⁑π‘₯ )/𝑑π‘₯ (𝑑(log⁑𝑣))/𝑑𝑣 (𝑑𝑣/𝑑π‘₯) = 𝑑(〖𝑦 log〗⁑π‘₯ )/𝑑π‘₯ 1/𝑣 (𝑑𝑣/𝑑π‘₯) = ( 𝑑(〖𝑦 log〗⁑π‘₯ ))/𝑑π‘₯ 1/𝑣 (𝑑𝑣/𝑑π‘₯) = ( 𝑑(𝑦))/𝑑π‘₯ . log⁑π‘₯ + (𝑑 (log⁑π‘₯))/𝑑π‘₯ . 𝑦 1/𝑣 (𝑑𝑣/𝑑π‘₯) = ( 𝑑𝑦)/𝑑π‘₯ . log⁑π‘₯ + 1/π‘₯ . 𝑦 1/𝑣 (𝑑𝑣/𝑑π‘₯) = ( 𝑑𝑦)/𝑑π‘₯ log⁑π‘₯ + 𝑦/π‘₯ 𝑑𝑣/𝑑π‘₯ = v (log π‘₯+𝑦/π‘₯) Putting value of 𝑣 = π‘₯^𝑦 𝑑𝑣/𝑑π‘₯ = π‘₯^𝑦 (log⁑〖π‘₯+ 𝑦/π‘₯γ€— ) 𝑑𝑣/𝑑π‘₯ = π‘₯^𝑦.log π‘₯ . 𝑑𝑦/𝑑π‘₯ + π‘₯^𝑦. 𝑦/π‘₯ Using product Rule As (𝑒𝑣)’ = 𝑒’𝑣 + 𝑣’𝑒 Calculating 𝒅𝒖/𝒅𝒙 𝑒 = 𝑦^π‘₯ Taking log both sides log⁑𝑒=log⁑〖 (𝑦^π‘₯)" " γ€— log⁑𝑒=γ€–π‘₯ . log〗⁑𝑦" " Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯ (𝑑(log⁑𝑒))/𝑑π‘₯ = (𝑑(π‘₯ . log⁑𝑦))/𝑑π‘₯ (𝑑(log⁑𝑒))/𝑑π‘₯ (𝑑𝑒/𝑑𝑒) = 𝑑(π‘₯.log⁑𝑦 )/𝑑π‘₯ (𝐴𝑠 log⁑〖(π‘Ž^𝑏)γ€—=𝑏 logβ‘π‘Ž ) (𝑑(log⁑𝑒))/𝑑𝑒 (𝑑𝑒/𝑑π‘₯) = (𝑑 (π‘₯ . log⁑𝑦))/𝑑π‘₯ 1/𝑒 . 𝑑𝑒/𝑑π‘₯ = (𝑑 (π‘₯ . log⁑𝑦 ))/𝑑π‘₯ 1/𝑒 . 𝑑𝑒/𝑑π‘₯ = (𝑑 (π‘₯))/𝑑π‘₯ . log⁑𝑦 + (𝑑(log⁑𝑦))/𝑑π‘₯ . π‘₯ 1/𝑒 . 𝑑𝑒/𝑑π‘₯ = 1 . log⁑𝑦 + π‘₯. 𝑑(log⁑𝑦 )/𝑑π‘₯ . 𝑑𝑦/𝑑𝑦 1/𝑒 . 𝑑𝑒/𝑑π‘₯ = log⁑𝑦 + π‘₯. 𝑑(log⁑𝑦 )/𝑑𝑦 . 𝑑𝑦/𝑑π‘₯ 1/𝑒 . 𝑑𝑒/𝑑π‘₯ = log⁑𝑦 + π‘₯. 1/𝑦 . 𝑑𝑦/𝑑π‘₯ Using product Rule As (𝑒𝑣)’ = 𝑒’𝑣 + 𝑣’𝑒 𝑑𝑒/𝑑π‘₯ = 𝑒(log⁑𝑦 " + " π‘₯/𝑦 " . " (𝑑𝑦 )/𝑑π‘₯) 𝑑𝑒/𝑑π‘₯ " = " 𝑦^π‘₯ (log⁑𝑦 " + " π‘₯/𝑦 " . " (𝑑𝑦 )/𝑑π‘₯) 𝑑𝑒/𝑑π‘₯ = 𝑦^π‘₯ log⁑𝑦+𝑦^(π‘₯ βˆ’1). π‘₯ 𝑑𝑦/𝑑π‘₯ Now, 𝑑𝑣/𝑑π‘₯ + 𝑑𝑒/𝑑π‘₯ = 0 Putting value of 𝑑𝑣/𝑑π‘₯ & 𝑑𝑒/𝑑π‘₯ (π‘₯^𝑦 log⁑〖π‘₯ γ€— 𝑑𝑦/𝑑π‘₯ +π‘₯^𝑦 𝑦/π‘₯) + (𝑦^π‘₯ log⁑〖𝑦+𝑦^(π‘₯ βˆ’1) γ€—.π‘₯ 𝑑𝑦/𝑑π‘₯) = 0 π‘₯^𝑦 log⁑〖π‘₯ γ€— 𝑑𝑦/𝑑π‘₯ +π‘₯^(π‘¦βˆ’1) 𝑦 + 𝑦^π‘₯ log⁑〖𝑦+𝑦^(π‘₯ βˆ’1) γ€—.π‘₯ 𝑑𝑦/𝑑π‘₯ = 0 π‘₯^𝑦 log⁑〖π‘₯ γ€— 𝑑𝑦/𝑑π‘₯+𝑦^(π‘₯ βˆ’1).π‘₯ 𝑑𝑦/𝑑π‘₯=βˆ’(π‘₯^(π‘¦βˆ’1) 𝑦+𝑦^π‘₯ log⁑𝑦 ) 𝑑𝑦/𝑑π‘₯(π‘₯^𝑦 log⁑〖π‘₯ γ€—+𝑦^(π‘₯ βˆ’1).π‘₯)=βˆ’(π‘₯^(π‘¦βˆ’1) 𝑦+𝑦^π‘₯ log⁑𝑦 ) π’…π’š/𝒅𝒙 = (βˆ’(𝒙^(π’šβˆ’πŸ) π’š + π’š^𝒙 π’π’π’ˆβ‘π’š ))/((𝒙^π’š π’π’π’ˆβ‘γ€–π’™ γ€—+ π’š^(𝒙 βˆ’πŸ).𝒙))

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.