Ex 5.5, 11 - Differentiate (x cos x)x + (x sin x)1/x - Ex 5.5

Ex 5.5, 11 - Chapter 5 Class 12 Continuity and Differentiability - Part 2
Ex 5.5, 11 - Chapter 5 Class 12 Continuity and Differentiability - Part 3
Ex 5.5, 11 - Chapter 5 Class 12 Continuity and Differentiability - Part 4
Ex 5.5, 11 - Chapter 5 Class 12 Continuity and Differentiability - Part 5 Ex 5.5, 11 - Chapter 5 Class 12 Continuity and Differentiability - Part 6 Ex 5.5, 11 - Chapter 5 Class 12 Continuity and Differentiability - Part 7


Transcript

Ex 5.5, 11 Differentiate the functions in, 〖(𝑥 𝑐𝑜𝑠⁡𝑥 ) 〗^𝑥 + 〖(𝑥 𝑠𝑖𝑛⁡𝑥 ) 〗^(1/𝑥)𝑦 = 〖(𝑥 𝑐𝑜𝑠⁡𝑥 ) 〗^𝑥 + 〖(𝑥 𝑠𝑖𝑛⁡𝑥 ) 〗^(1/𝑥) Let 𝑢 = 〖(𝑥 𝑐𝑜𝑠⁡𝑥 ) 〗^𝑥 , 𝑣 = 〖(𝑥 𝑠𝑖𝑛⁡𝑥 ) 〗^(1/𝑥) 𝑦 = 𝑢+𝑣 Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑𝑦/𝑑𝑥 = (𝑑 (𝑢 + 𝑣))/𝑑𝑥 𝑑𝑦/𝑑𝑥 = 𝑑𝑢/𝑑𝑥 + 𝑑𝑣/𝑑𝑥 Calculating 𝒅𝒖/𝒅𝒙 𝑢 =〖 (𝑥 𝑐𝑜𝑠⁡𝑥 ) 〗^𝑥 Taking log both sides . log⁡𝑢 = log〖 (𝑥 𝑐𝑜𝑠⁡𝑥 ) 〗^𝑥 log⁡𝑢 = 𝑥 . log (𝑥 𝑐𝑜𝑠⁡𝑥 ) Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑(log⁡𝑢 )/𝑑𝑥 = (𝑑(𝑥 . log⁡(𝑥 cos⁡𝑥 ) ) )/𝑑𝑥 𝑑(log⁡𝑢 )/𝑑𝑢 . 𝑑𝑢/𝑑𝑥 = (𝑑(𝑥 . log⁡(𝑥 cos⁡𝑥 ) ) )/𝑑𝑥 1/𝑢 (𝑑𝑢/𝑑𝑥) = (𝑑(𝑥 . log⁡(𝑥 cos⁡𝑥 ) ) )/𝑑𝑥 (As 𝑙𝑜𝑔⁡(𝑎^𝑏 )=𝑏 . 𝑙𝑜𝑔⁡𝑎) Using product Rule As (𝑢𝑣)’ = 𝑢’𝑣 + 𝑣’𝑢 1/𝑢 (𝑑𝑢/𝑑𝑥) = 𝑑𝑥/𝑑𝑥 log⁡〖(𝑥 𝑐𝑜𝑠 𝑥)〗+𝑥 (𝑑(𝑙𝑜𝑔⁡(𝑥 𝑐𝑜𝑠⁡𝑥 ) ) )/𝑑𝑥 1/𝑢 (𝑑𝑢/𝑑𝑥) = log⁡〖(𝑥 cos⁡𝑥)〗+𝑥/(𝑥 cos⁡𝑥 ) × (𝑥 𝑐𝑜𝑠 𝑥)^′ 1/𝑢 (𝑑𝑢/𝑑𝑥) = log⁡〖(𝑥 cos⁡𝑥)〗+1/cos⁡𝑥 × (1.cos⁡𝑥+𝑥(−sin⁡𝑥 )) 1/𝑢 (𝑑𝑢/𝑑𝑥) = log⁡〖(𝑥 cos⁡𝑥)〗+((cos⁡𝑥 − 𝑥 sin⁡𝑥 ))/cos⁡𝑥 1/𝑢 (𝑑𝑢/𝑑𝑥) = log⁡〖(𝑥 cos⁡𝑥)〗+cos⁡𝑥/cos⁡𝑥 −(𝑥 sin⁡𝑥)/cos⁡𝑥 1/𝑢 (𝑑𝑢/𝑑𝑥) = log⁡〖(𝑥 cos⁡𝑥)〗+1−𝑥 𝑡𝑎𝑛 𝑥 𝑑𝑢/𝑑𝑥 = u (1−𝑥 tan⁡𝑥+log⁡〖(𝑥 cos⁡𝑥 〗)) Putting value of 𝑢 𝑑𝑢/𝑑𝑥 = (𝑥 cos⁡𝑥 )^𝑥 (1−𝑥 tan⁡𝑥+𝒍𝒐𝒈⁡(𝒙 𝒄𝒐𝒔⁡𝒙 ) ) Calculating 𝒅𝒗/𝒅𝒙 𝑣=〖(𝑥 𝑠𝑖𝑛⁡𝑥 ) 〗^(1/𝑥) Taking log both sides log⁡𝑣=log⁡〖 〖(𝑥 𝑠𝑖𝑛⁡𝑥 ) 〗^(1/𝑥) 〗 log⁡𝑣= 1/𝑥 log (𝑥 𝑠𝑖𝑛⁡𝑥 ) Differentiating both sides 𝑤.𝑟.𝑡.𝑥. (𝑑(log⁡𝑣))/𝑑𝑥 = 𝑑(1/𝑥 " . " )/𝑑𝑥 (𝑑(log⁡𝑣))/𝑑𝑣 . 𝑑𝑣/𝑑𝑥 = (1/𝑥 .log⁡(𝑥 sin⁡𝑥 ) )^′ 1/𝑣 × 𝑑𝑣/𝑑𝑥 = (1/𝑥 .log⁡(𝑥 sin⁡𝑥 ) )^′ 1/𝑣 × 𝑑𝑣/𝑑𝑥 = (((log⁡〖(𝑥 sin⁡𝑥)〗 )^′ 𝑥 + 𝑥^′ log⁡〖(𝑥 sin⁡𝑥)〗)/𝑥^2 ) Using quotient rule (𝑢/𝑣)^′ = (𝑢^′ 𝑣 − 𝑣^′ 𝑢)/𝑣^2 Where u = log (x sin x) , v = x 1/𝑣 × 𝑑𝑣/𝑑𝑥 = 1/x^2 ((log⁡〖(𝑥 sin⁡𝑥)〗 )^′ 𝑥 + log⁡〖(𝑥 sin⁡𝑥)〗 ) 1/𝑣 × 𝑑𝑣/𝑑𝑥 = 1/x^2 ([1/(𝑥 sin⁡𝑥 ) \ ×(𝑥 sin⁡𝑥 )^′ ]𝑥 + log⁡〖(𝑥 sin⁡𝑥)〗 ) 1/𝑣 × 𝑑𝑣/𝑑𝑥 = 1/x^2 (1/sin⁡𝑥 \ ×(𝑥 sin⁡𝑥 )^′+ log⁡〖(𝑥 sin⁡𝑥)〗 ) 1/𝑣 × 𝑑𝑣/𝑑𝑥 = 1/𝑥^2 (((1 . 𝑠𝑖𝑛⁡𝑥 + 𝑥 𝑐𝑜𝑠⁡𝑥))/𝑠𝑖𝑛⁡𝑥 \ + 𝑙𝑜𝑔⁡〖(𝑥 𝑠𝑖𝑛⁡𝑥)〗 ) 1/𝑣 × 𝑑𝑣/𝑑𝑥 = 1/𝑥^2 (((𝑠𝑖𝑛⁡𝑥 + 𝑥 𝑐𝑜𝑠⁡𝑥))/𝑠𝑖𝑛⁡𝑥 \ + 𝑙𝑜𝑔⁡〖(𝑥 𝑠𝑖𝑛⁡𝑥)〗 ) 1/𝑣 × 𝑑𝑣/𝑑𝑥 = 1/𝑥^2 (1+𝑥 cot⁡𝑥+ 𝑙𝑜𝑔⁡〖(𝑥 𝑠𝑖𝑛⁡𝑥)〗 ) 𝑑𝑣/𝑑𝑥 = 𝑣((1 + 〖𝑥 𝑐𝑜𝑡〗⁡〖𝑥 〗 − 𝑙𝑜𝑔⁡〖 (𝑥 𝑠𝑖𝑛⁡𝑥 ) 〗)/𝑥^2 ) 𝑑𝑣/𝑑𝑥 = (𝑥 𝑠𝑖𝑛⁡𝑥 )^(1/𝑥) ((1 + 〖𝑥 𝑐𝑜𝑡〗⁡〖𝑥 〗− 𝑙𝑜𝑔 (𝑥 𝑠𝑖𝑛⁡𝑥 ))/𝑥^2 ) Now, 𝑑𝑦/𝑑𝑥 = 𝑑𝑢/𝑑𝑥 + 𝑑𝑣/𝑑𝑥 Putting value of 𝑑𝑢/𝑑𝑥 & 𝑑𝑣/𝑑𝑥 𝒅𝒚/𝒅𝒙 = (𝒙 𝒄𝒐𝒔⁡𝒙 )^𝒙 (𝟏 − 𝒙 𝒕𝒂𝒏⁡𝒙+𝒍𝒐𝒈⁡(𝒙 𝒄𝒐𝒔⁡𝒙 ) ) + (𝒙 𝒔𝒊𝒏⁡𝒙 )^(𝟏/𝒙) ((〖𝒙 𝒄𝒐𝒕〗⁡〖𝒙 〗 + 𝟏 − 𝐥𝐨𝐠 (𝒙 𝒔𝒊𝒏⁡𝒙 ))/𝒙^𝟐 )

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.