
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Logarithmic Differentiation - Type 1
Example 29 Important
Ex 5.5, 3 Important
Ex 5.5, 15
Ex 5.5, 5
Ex 5.5, 1 Important You are here
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
Example 27 Important
Ex 5.5, 2
Misc 22 Important
Misc 3
Misc 7 Important
Example 41
Misc 9 Important
Example 40 (i)
Logarithmic Differentiation - Type 1
Last updated at May 29, 2023 by Teachoo
Ex 5.5, 1 Differentiate the functions in, cos𝑥 . cos2𝑥 . cos3𝑥 Let y = cos𝑥 . cos2𝑥 . cos3𝑥 Taking log both sides log𝑦 = log (cos𝑥.cos2𝑥.cos3𝑥 ) 𝒍𝒐𝒈𝒚 = 𝒍𝒐𝒈 (𝒄𝒐𝒔𝒙) + 𝒍𝒐𝒈 (𝒄𝒐𝒔 𝟐𝒙) + 𝒍𝒐𝒈 (𝒄𝒐𝒔𝟑𝒙) Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑(log𝑦 )/𝑑𝑥 = 𝑑(log (cos𝑥)" + " log (cos2𝑥) "+ " log (cos3𝑥))/𝑑𝑥 𝑑(log𝑦 )/𝑑𝑥 (𝑑𝑦/𝑑𝑦) = (𝑑(log (cos𝑥)) )/𝑑𝑥 + (𝑑(log (cos2𝑥)) )/𝑑𝑥 + (𝑑(log (cos3𝑥)) )/𝑑𝑥 𝒅(𝒍𝒐𝒈𝒚 )/𝒅𝒚 (𝒅𝒚/𝒅𝒙) = 𝟏/𝐜𝐨𝐬𝒙 . (𝒅 (𝐜𝐨𝐬𝒙 ))/𝒅𝒙 + 𝟏/𝐜𝐨𝐬𝟐𝒙 . (𝒅(𝐜𝐨𝐬𝟐𝒙))/𝒅𝒙 + 𝟏/𝐜𝐨𝐬𝟑𝒙 . 𝒅(𝐜𝐨𝐬𝟑𝒙 )/𝒅𝒙 1/𝑦 . 𝑑𝑦/𝑑𝑥 = 1/cos𝑥 .(− sin𝑥) + 1/cos2𝑥 .(− sin2𝑥).𝑑(2𝑥)/𝑑𝑥 + 1/cos𝑥 .(− sin3𝑥).𝑑(3𝑥)/𝑑𝑥 𝟏/𝒚 . 𝒅𝒚/𝒅𝒙 = (−𝐬𝐢𝐧𝒙)/𝐜𝐨𝐬𝒙 − 𝐬𝐢𝐧𝟐𝒙/𝐜𝐨𝐬𝒙 . 𝟐 − 𝐬𝐢𝐧𝟑𝒙/𝐜𝐨𝐬𝟑𝒙 . 𝟑 1/𝑦 . 𝑑𝑦/𝑑𝑥 = −tan𝑥−tan2𝑥. 2 −tan3𝑥. 3 𝟏/𝒚 . 𝒅𝒚/𝒅𝒙 = − (𝒕𝒂𝒏𝒙+𝟐 𝒕𝒂𝒏𝟐𝒙+𝟑 𝒕𝒂𝒏𝟑𝒙 ) 𝑑𝑦/𝑑𝑥 = −𝑦 (tan𝑥+2 tan2𝑥+3 tan3𝑥 ) 𝒅𝒚/𝒅𝒙 = − 𝒄𝒐𝒔𝒙 . 𝒄𝒐𝒔𝟐𝒙 . 𝒄𝒐𝒔𝟑𝒙 (𝒕𝒂𝒏𝒙+𝟐 𝒕𝒂𝒏𝟐𝒙+𝟑 𝒕𝒂𝒏𝟑𝒙 )