Logarithmic Differentiation - Type 1

Chapter 5 Class 12 Continuity and Differentiability
Concept wise

### Transcript

Ex 5.5, 3 Differentiate the functions in, (logβ‘π₯ )^cosβ‘π₯ Let π¦=(logβ‘π₯ )^cosβ‘π₯ Taking log both sides logβ‘π¦ = logβ‘γγ (logβ‘π₯ )γ^cosβ‘π₯ γ logβ‘π¦ = cosβ‘γπ₯ .γlog γβ‘(logβ‘π₯ ) γ Differentiating both sides π€.π.π‘.π₯. π(logβ‘π¦)/ππ₯ = π(cosβ‘γπ₯ .γ log γβ‘(logβ‘π₯ ) γ )/ππ₯ π(logβ‘π¦ )/ππ₯ (ππ¦/ππ¦) = π(cosβ‘γπ₯ .γ log γβ‘(logβ‘π₯ ) γ )/ππ₯ π(logβ‘π¦ )/ππ₯ (ππ¦/ππ₯) = π(cosβ‘γπ₯ .γ log γβ‘(logβ‘π₯ ) γ )/ππ₯ (As πππβ‘(π^π) = π πππβ‘π) 1/π¦ . ππ¦/ππ₯ = π(cosβ‘γπ₯ .γ log γβ‘(logβ‘π₯ ) γ )/ππ₯ 1/π¦ ππ¦/ππ₯ = π(cosβ‘π₯ )/ππ₯ . γ log γβ‘(logβ‘π₯ ) + π(γ log γβ‘(logβ‘π₯ ) )/ππ₯ . cosβ‘π₯ 1/π¦ ππ¦/ππ₯ = γβsinγβ‘π₯ . γlog γβ‘(logβ‘π₯ ) + 1/logβ‘π₯ . π(logβ‘π₯ )/ππ₯ . cosβ‘π₯ 1/π¦ ππ¦/ππ₯ = γβsinγβ‘π₯ . γlog γβ‘(logβ‘π₯ ) + 1/logβ‘π₯ Γ 1/π₯ . cosβ‘π₯ 1/π¦ ππ¦/ππ₯ = γβsinγβ‘π₯ . γlog γβ‘(logβ‘π₯ ) + cosβ‘π₯/(π₯ logβ‘π₯ ) ππ¦/ππ₯ = π¦ (γβsinγβ‘π₯ " . " γlog γβ‘(logβ‘π₯ )" + " cosβ‘π₯/(π₯ logβ‘π₯ )) Using product rule in πππ β‘γπ₯ .γ πππ γβ‘(πππβ‘π₯ ) γ (π’π£)β = π’βπ£ + π£βπ’ Putting values of π¦ ππ¦/ππ₯ = (πππβ‘π₯ )^πππ β‘π₯ (γβπ ππγβ‘π₯ " . " γπππ γβ‘(πππβ‘π₯ )" + " πππ β‘π₯/(π₯ πππβ‘π₯ )) ππ/ππ = (πππβ‘π )^πππβ‘π (πππβ‘π/(π πππβ‘π ) γ β πππγβ‘π " . " γπ₯π¨π  γβ‘(πππβ‘π ) )

Made by

#### Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.