Ex 5.5, 16 - Find derivative of f(x)=(1+x)(1+x2)(1+x4)(1+x8)

Ex 5.5, 16 - Chapter 5 Class 12 Continuity and Differentiability - Part 2
Ex 5.5, 16 - Chapter 5 Class 12 Continuity and Differentiability - Part 3
Ex 5.5, 16 - Chapter 5 Class 12 Continuity and Differentiability - Part 4


Transcript

Ex 5.5, 16 Find the derivative of the function given by f (๐‘ฅ) = (1 + ๐‘ฅ) (1 + ๐‘ฅ^2) (1 + ๐‘ฅ^4) (1 + ๐‘ฅ8) and hence find f โ€ฒ(1) .Given ๐‘“(๐‘ฅ)=(1+๐‘ฅ)(1+๐‘ฅ^2 )(1+๐‘ฅ^4 )(1+๐‘ฅ^8 )" " Let ๐‘ฆ=(1+๐‘ฅ)(1+๐‘ฅ^2 )(1+๐‘ฅ^4 )(1+๐‘ฅ^8 ) Taking log both sides log ๐‘ฆ = log (1+๐‘ฅ)(1+๐‘ฅ^2 )(1+๐‘ฅ^4 )(1+๐‘ฅ^8 ) log ๐‘ฆ = log (1+๐‘ฅ)+logโก(1+๐‘ฅ^2 )+logโก(1+๐‘ฅ^4 ) ใ€–+ logใ€—โกใ€– (1+๐‘ฅ^8 )ใ€— Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ. ๐‘‘(logโก๐‘ฆ )/๐‘‘๐‘ฅ = ๐‘‘(log (1 + ๐‘ฅ) + logโก(1 + ๐‘ฅ^2 ) + logโก(1 + ๐‘ฅ^4 )+ logโกใ€– (1 + ๐‘ฅ^8 )ใ€— )/๐‘‘๐‘ฅ ๐‘‘(logโก๐‘ฆ )/๐‘‘๐‘ฅ = ๐‘‘(log (1 + ๐‘ฅ))/๐‘‘๐‘ฅ + ๐‘‘(logโก(1 + ๐‘ฅ^2 ) )/๐‘‘๐‘ฅ + ๐‘‘(logโก(1 + ๐‘ฅ^4 ) )/๐‘‘๐‘ฅ + ๐‘‘(logโกใ€– (1 + ๐‘ฅ^8 )ใ€— )/๐‘‘๐‘ฅ ๐‘‘(logโก๐‘ฆ )/๐‘‘๐‘ฆ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = 1/(1 + ๐‘ฅ) . ๐‘‘(1 + ๐‘ฅ)/๐‘‘๐‘ฅ + 1/((1 + ๐‘ฅ^2 ) ) . ๐‘‘(1 + ๐‘ฅ^2 )/๐‘‘๐‘ฅ + 1/((1 + ๐‘ฅ^4 ) ) . ๐‘‘(1 + ๐‘ฅ^4 )/๐‘‘๐‘ฅ + 1/((1 + ๐‘ฅ^8 ) ) . ๐‘‘(1 + ๐‘ฅ^8 )/๐‘‘๐‘ฅ 1/๐‘ฆ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = 1/(1 + ๐‘ฅ) . (0+1) + 1/((1 + ๐‘ฅ^2 ) ) . (0+2๐‘ฅ) + 1/((1 + ๐‘ฅ^4 ) ) . (0+4๐‘ฅ^3 ) + 1/((1 + ๐‘ฅ^8 ) ) . (0+8๐‘ฅ^7 ) 1/๐‘ฆ . ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = 1/(1 + ๐‘ฅ) + 2๐‘ฅ/(1 + ๐‘ฅ^2 ) + (4๐‘ฅ^3)/(1 + ๐‘ฅ^4 ) + (8๐‘ฅ^7)/(1 + ๐‘ฅ^8 ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘ฆ (1/(1 + ๐‘ฅ) " + " 2๐‘ฅ/(1 + ๐‘ฅ^2 ) " + " (4๐‘ฅ^3)/(1 + ๐‘ฅ^4 ) " + " (8๐‘ฅ^7)/(1 + ๐‘ฅ^8 )) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (1+๐‘ฅ)(1+๐‘ฅ^2 )(1+๐‘ฅ^4 )(1+๐‘ฅ^8 ) (1/(1 + ๐‘ฅ) " + " 2๐‘ฅ/(1 + ๐‘ฅ^2 ) " + " (4๐‘ฅ^3)/(1 + ๐‘ฅ^4 ) " +" (8๐‘ฅ^7)/(1 + ๐‘ฅ^8 )) Hence, ๐’‡โ€ฒ(๐’™) = (๐Ÿ+๐’™)(๐Ÿ+๐’™^๐Ÿ )(๐Ÿ+๐’™^๐Ÿ’ )(๐Ÿ+๐’™^๐Ÿ– ) (๐Ÿ/(๐Ÿ + ๐’™) " + " ๐Ÿ๐’™/(๐Ÿ + ๐’™^๐Ÿ ) " + " (๐Ÿ’๐’™^๐Ÿ‘)/(๐Ÿ + ๐’™^๐Ÿ’ ) " + " (๐Ÿ–๐’™^๐Ÿ•)/(๐Ÿ + ๐’™^๐Ÿ– )) We need to find ๐‘“โ€ฒ(1) Putting ๐‘ฅ=1 ๐‘“โ€ฒ(1) = (1+1)(1+(1)^2 )(1+(1)^4 )(1+ใ€–(1)ใ€—^8 ) (1/(1 +1) " + " 2(1)/(1+(1)^2 ) " + " (4(1)^3)/(1 + (1)^4 ) " + " (8(1)^7)/(1 + (1)^8 )) = 2(1+1)(1+1)(1+1) (1/(1 + 1) " + " 2/(1 + 1) " + " 4/(1 + 1) " + " 8/(1 + 1)) = 2(2)(2)(2) (1/2 " + " 2/2 " + " 4/2 " + " 8/2) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (1+๐‘ฅ)(1+๐‘ฅ^2 )(1+๐‘ฅ^4 )(1+๐‘ฅ^8 ) (1/(1 + ๐‘ฅ) " + " 2๐‘ฅ/(1 + ๐‘ฅ^2 ) " + " (4๐‘ฅ^3)/(1 + ๐‘ฅ^4 ) " +" (8๐‘ฅ^7)/(1 + ๐‘ฅ^8 )) Hence, ๐’‡โ€ฒ(๐’™) = (๐Ÿ+๐’™)(๐Ÿ+๐’™^๐Ÿ )(๐Ÿ+๐’™^๐Ÿ’ )(๐Ÿ+๐’™^๐Ÿ– ) (๐Ÿ/(๐Ÿ + ๐’™) " + " ๐Ÿ๐’™/(๐Ÿ + ๐’™^๐Ÿ ) " + " (๐Ÿ’๐’™^๐Ÿ‘)/(๐Ÿ + ๐’™^๐Ÿ’ ) " + " (๐Ÿ–๐’™^๐Ÿ•)/(๐Ÿ + ๐’™^๐Ÿ– )) We need to find ๐‘“โ€ฒ(1) Putting ๐‘ฅ=1 ๐‘“โ€ฒ(1) = (1+1)(1+(1)^2 )(1+(1)^4 )(1+ใ€–(1)ใ€—^8 ) (1/(1 +1) " + " 2(1)/(1+(1)^2 ) " + " (4(1)^3)/(1 + (1)^4 ) " + " (8(1)^7)/(1 + (1)^8 )) = 2(1+1)(1+1)(1+1) (1/(1 + 1) " + " 2/(1 + 1) " + " 4/(1 + 1) " + " 8/(1 + 1)) = 2(2)(2)(2) (1/2 " + " 2/2 " + " 4/2 " + " 8/2)

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.