Slide16.JPG

Slide17.JPG

Something went wrong!

The video couldn't load due to a technical hiccup.
But don't worry — our team is already on it, and we're working hard to get it back up ASAP.

Thanks for bearing with us!

Share on WhatsApp

Transcript

Example 29 Differentiate π‘₯^sin⁑π‘₯ , π‘₯ > 0 𝑀.π‘Ÿ.𝑑. π‘₯.Let y = π‘₯^sin⁑π‘₯ Taking log both sides log⁑𝑦 = log π‘₯^sin⁑π‘₯ π’π’π’ˆβ‘π’š = π’”π’Šπ’β‘π’™ . π’π’π’ˆ 𝒙 Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ (𝑑(log⁑〖𝑦)γ€—)/𝑑π‘₯ = 𝑑/𝑑π‘₯ (sin⁑〖π‘₯ log⁑π‘₯ γ€— ) By product Rule (uv)’ = u’v + v’u where u = sin x & v = log x (𝑑(log⁑〖𝑦)γ€—)/𝑑π‘₯ = (𝑑(sin⁑π‘₯))/𝑑π‘₯.log π‘₯+sin π‘₯ . (𝑑(log⁑π‘₯))/𝑑π‘₯ (𝑑(log⁑〖𝑦)γ€—)/𝑑𝑦 Γ— 𝑑𝑦/𝑑π‘₯ = cos⁑π‘₯ log⁑π‘₯ + sin⁑π‘₯ 1/π‘₯ 𝑑𝑦/𝑑π‘₯ 1/𝑦 = 𝒄𝒐𝒔 π’™β‘π’π’π’ˆβ‘π’™ + π’”π’Šπ’β‘π’™ 𝟏/𝒙 𝑑𝑦/𝑑π‘₯ = 𝑦 (γ€–π‘π‘œπ‘  π‘₯γ€—β‘γ€–π‘™π‘œπ‘”β‘γ€–π‘₯+1/π‘₯γ€— 𝑠𝑖𝑛⁑π‘₯ γ€— ) Putting back 𝑦 = π‘₯^𝑠𝑖𝑛⁑π‘₯ 𝑑𝑦/𝑑π‘₯ = π‘₯^𝑠𝑖𝑛⁑π‘₯ (cos⁑〖log⁑〖π‘₯+ 1/π‘₯γ€— sin⁑π‘₯ γ€— ) = π‘₯^𝑠𝑖𝑛⁑π‘₯ cos⁑log⁑π‘₯ + π‘₯^𝑠𝑖𝑛⁑π‘₯ 1/π‘₯ 𝑠𝑖𝑛⁑π‘₯ = π‘₯^𝑠𝑖𝑛⁑π‘₯ cos⁑log⁑π‘₯ + π‘₯^𝑠𝑖𝑛⁑π‘₯ π‘₯^(βˆ’1) sin⁑π‘₯ = 𝒙^π’”π’Šπ’β‘π’™ π’„π’π’”β‘π’π’π’ˆβ‘π’™ + 𝒙^π’”π’Šπ’β‘γ€–π’™ βˆ’ πŸγ€— π’”π’Šπ’β‘π’™

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo