

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Logarithmic Differentiation - Type 1
Example 29 Important
Ex 5.5, 3 Important
Ex 5.5, 15
Ex 5.5, 5
Ex 5.5, 1 Important
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
Example 27 Important
Ex 5.5, 2 You are here
Misc 22 Important
Misc 3
Misc 7 Important
Example 41
Misc 9 Important
Example 40 (i)
Logarithmic Differentiation - Type 1
Last updated at May 29, 2023 by Teachoo
Ex 5.5, 2 Differentiate the functions in, √(((𝑥 − 1)(𝑥 − 2))/((𝑥 − 3)(𝑥 − 4)(𝑥 − 5))) Let 𝑦=√(((𝑥 − 1)(𝑥 − 2))/((𝑥 − 3)(𝑥 − 4)(𝑥 − 5))) 𝑦= (((𝑥 − 1)(𝑥 − 2))/((𝑥 − 3)(𝑥 − 4)(𝑥 − 5)))^(1/2) Taking log both sides log𝑦 = log (((𝑥 − 1)(𝑥 − 2))/((𝑥 − 3)(𝑥 − 4)(𝑥 − 5)))^(1/2) log𝑦 = 1/2 log (((𝑥 − 1)(𝑥 − 2))/((𝑥 − 3)(𝑥 − 4)(𝑥 − 5))) (As 𝑙𝑜𝑔(𝑎^𝑏) = 𝑏 𝑙𝑜𝑔𝑎) log𝑦 = 1/2 [log〖((𝑥−1)(𝑥−2))−log((𝑥−3)(𝑥−4)(𝑥−5)) 〗 ] log𝑦 = 1/2 . [("log " (𝑥+1)" + log " (𝑥−2))" − " (log(𝑥−3)+log〖(𝑥−4)+log(𝑥−5) 〗 )] log𝑦 = 1/2 . ["log " (𝑥+1)" + log " (𝑥+2)" − " log(𝑥−3)−log〖(𝑥−4)−log(𝑥−5) 〗 ] Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑(log𝑦)/𝑑𝑥 = (𝑑 (1/2 " ." log〖(𝑥 + 1)" +" log〖 (𝑥 + 2)" − " log(𝑥 − 3)−log〖(𝑥 − 4)−log(𝑥 − 5) 〗 〗 〗 ))/𝑑𝑥 𝑑(log𝑦)/𝑑𝑥 (𝑑𝑦/𝑑𝑦) = 1/2 (𝑑(〖log 〗〖(𝑥 + 1)" +" log〖(𝑥 + 2)" −" log(𝑥 − 3) − log〖(𝑥 − 4) − log(𝑥 − 5) 〗 〗 〗 )/𝑑𝑥) 1/𝑦 . 𝑑𝑦/𝑑𝑥 = 1/2 (1/(𝑥 + 1)+1/(𝑥 + 2)−1/(𝑥 − 3)−1/(𝑥 − 4)−1/(𝑥 − 5)) 𝑑𝑦/𝑑𝑥 = 1/2 𝑦(1/(𝑥 − 1)+1/(𝑥 − 2)−1/(𝑥 − 3)−1/(𝑥 − 4)−1/(𝑥 − 5)) 𝒅𝒚/𝒅𝒙 = 𝟏/𝟐 √(((𝒙 − 𝟏)(𝒙 − 𝟐))/((𝒙 − 𝟑)(𝒙 − 𝟒)(𝒙 − 𝟓))) (𝟏/(𝒙 − 𝟏)+𝟏/(𝒙 − 𝟐)−𝟏/(𝒙 − 𝟑)−𝟏/(𝒙 − 𝟒)−𝟏/(𝒙 − 𝟓))