Example 40 (i) - Differentiate cos^-1 (sin x) w.r.t x - with Video - Examples

 

 

part 2 - Example 40 (i) - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability

 

 

Remove Ads

Transcript

Example 40 (Method 1) Differentiate the following 𝑀.π‘Ÿ.𝑑. π‘₯. (i) cos^(βˆ’1) (sin⁑π‘₯) Let 𝑓(π‘₯) = cos^(βˆ’1) (sin⁑π‘₯) 𝑓(π‘₯) = cos^(βˆ’1) (γ€–cos 〗⁑(πœ‹/2 βˆ’π‘₯) ) 𝒇(𝒙) = 𝝅/𝟐 βˆ’π’™ Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑓’(π‘₯) = (𝑑 (πœ‹/2))/𝑑π‘₯ βˆ’ (𝑑(π‘₯))/𝑑π‘₯ 𝑓’(π‘₯) = 0 βˆ’ 1 𝒇’(𝒙) = βˆ’ 1(𝐴𝑠 γ€– 𝑠𝑖𝑛 πœƒ 〗⁑〖=γ€–π‘π‘œπ‘  〗⁑〖(πœ‹/2 βˆ’π‘₯)γ€— γ€— ) ("As " (𝑑(π‘₯))/𝑑π‘₯ " = 1 & " πœ‹/2 " is constant" ) Example 40 (Method 2) Differentiate the following 𝑀.π‘Ÿ.𝑑. π‘₯. (i) cos^(βˆ’1) (sin⁑π‘₯) Let 𝑓(π‘₯) = cos^(βˆ’1) (sin⁑π‘₯) Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑓′(π‘₯) = (βˆ’1)/√(1 βˆ’ γ€–(sin⁑π‘₯)γ€—^2 ) Γ— (sin⁑π‘₯ )^β€² 𝑓′(π‘₯) = (βˆ’1)/√(1 βˆ’ sin^2⁑π‘₯ ) Γ—cos⁑π‘₯ 𝑓′(π‘₯) = (βˆ’1)/√(cos^2⁑π‘₯ ) Γ—cos⁑π‘₯ 𝑓′(π‘₯) = (βˆ’1)/cos⁑π‘₯ Γ—cos⁑π‘₯ 𝒇’(𝒙) = βˆ’1

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo