ย  Example 27 - Differentiate root (x-3) (x^2+4) / 3x^2 + 4x + 5 - Examples part 2 - Example 27 - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability part 3 - Example 27 - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability

Share on WhatsApp

๐ŸŽ‰ Smart choice! You just saved 2+ minutes of ads and got straight to the good stuff. That's what being a Teachoo Black member is all about.


Transcript

Example 27 Differentiate โˆš(((๐‘ฅโˆ’3) (๐‘ฅ2+4))/( 3๐‘ฅ2+ 4๐‘ฅ + 5)) ๐‘ค.๐‘Ÿ.๐‘ก. ๐‘ฅ. Let y =โˆš(((๐‘ฅ โˆ’ 3) (๐‘ฅ^2 + 4))/( 3๐‘ฅ2+ 4๐‘ฅ + 5)) Taking log on both sides ๐’๐’๐’ˆโก๐’š = ๐’๐’๐’ˆ โˆš(((๐’™ โˆ’ ๐Ÿ‘) (๐’™๐Ÿ + ๐Ÿ’))/( ๐Ÿ‘๐’™๐Ÿ+ ๐Ÿ’๐’™ + ๐Ÿ“)) logโก๐‘ฆ = logโก (((๐‘ฅ โˆ’ 3) (๐‘ฅ2 + 4))/( 3๐‘ฅ2+ 4๐‘ฅ + 5))^(1/2) ๐’๐’๐’ˆโก๐’š = ๐Ÿ/๐Ÿ log ((๐‘ฅ โˆ’ 3) (๐‘ฅ2 + 4))/((3๐‘ฅ2+ 4๐‘ฅ + 5) ) (๐‘ˆ๐‘ ๐‘–๐‘›๐‘” logโกใ€–๐‘Ž^๐‘ ใ€—=๐‘ logโก๐‘Ž) ๐’๐’๐’ˆโก๐’š = ๐Ÿ/๐Ÿ log ((๐‘ฅ โˆ’ 3) (๐‘ฅ2 + 4))/((3๐‘ฅ2+ 4๐‘ฅ + 5) ) ๐‘™๐‘œ๐‘”โก๐‘ฆ = 1/2 (logโกใ€– (๐‘ฅโˆ’3)ใ€—+ใ€–log ใ€—โก(๐‘ฅ2 + 4)โˆ’logโกใ€– (3๐‘ฅ2 + 4๐‘ฅ + 5)ใ€— ) Differentiating ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ (๐‘‘ (logโก๐‘ฆ))/๐‘‘๐‘ฅ = 1/2 ((๐‘‘(logโก(๐‘ฅโˆ’3)+ใ€–log ใ€—โกใ€–(๐‘ฅ^2+4)โˆ’logโกใ€– (3๐‘ฅ^2+4๐‘ฅ+5)ใ€— ใ€— ) )/๐‘‘๐‘ฅ) (๐‘‘ (logโก๐‘ฆ))/๐‘‘๐‘ฅ = 1/2 ((๐‘‘(logโก(๐‘ฅโˆ’3)))/๐‘‘๐‘ฅ " + " ๐‘‘(logโก(๐‘ฅ^2+4) )/๐‘‘๐‘ฅ " โˆ’ " ๐‘‘(logโก(3๐‘ฅ^2+4๐‘ฅ+5) )/๐‘‘๐‘ฅ) 1/๐‘ฆ (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ) = 1/2 [1/(๐‘ฅ โˆ’ 3) " . " ๐‘‘(๐‘ฅ โˆ’3)/๐‘‘๐‘ฅ " + " 1/(๐‘ฅ^2 + 4) " . " (๐‘‘ (๐‘ฅ^2 + 4))/๐‘‘๐‘ฅ " โ€“ " 1/((3๐‘ฅ^2+ 4๐‘ฅ+ 5)) " . " (๐‘‘ (3๐‘ฅ^2+ 4๐‘ฅ+ 5))/(๐‘‘๐‘ฅ )] ๐‘ˆ๐‘ ๐‘–๐‘›๐‘” ๐‘™๐‘œ๐‘”โก๐‘Ž๐‘=๐‘™๐‘œ๐‘”โก๐‘Ž+๐‘๐‘œ๐‘ โก๐‘ &๐‘™๐‘œ๐‘”โกใ€–๐‘Ž/๐‘ใ€—=๐‘™๐‘œ๐‘”โกใ€–๐‘Žโˆ’๐‘™๐‘œ๐‘”โก๐‘ ใ€— 1/๐‘ฆ (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ) = 1/2 [1/((๐‘ฅ โˆ’ 3) ) " " (1โˆ’0) "+ " 1/(๐‘ฅ^2+ 4) " " (2๐‘ฅ + 0)" โˆ’ " 1/(3๐‘ฅ^2+ 4๐‘ฅ + 5) " " (6๐‘ฅ +4+0)" " ] 1/๐‘ฆ (๐‘‘๐‘ฆ/๐‘‘๐‘ฅ) = 1/2 (1/((๐‘ฅ โˆ’ 3) )+2๐‘ฅ/(๐‘ฅ^2+ 4)โˆ’(6๐‘ฅ + 4)/(3๐‘ฅ^2 + 4๐‘ฅ + 5)) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = ๐‘ฆ/2 (1/((๐‘ฅ โˆ’ 3) )+2๐‘ฅ/(๐‘ฅ^2+ 4)โˆ’(6๐‘ฅ + 4)/(3๐‘ฅ^2 + 4๐‘ฅ + 5)) ๐’…๐’š/๐’…๐’™ = ๐Ÿ/๐Ÿ โˆš(((๐’™ โˆ’ ๐Ÿ‘)(๐’™^๐Ÿ+ ๐Ÿ’))/(๐Ÿ‘๐’™^๐Ÿ+ ๐Ÿ’๐’™ + ๐Ÿ“)) (๐Ÿ/((๐’™ โˆ’ ๐Ÿ‘) )+๐Ÿ๐’™/(๐’™^๐Ÿ+ ๐Ÿ’)โˆ’(๐Ÿ”๐’™ + ๐Ÿ’)/(๐Ÿ‘๐’™^๐Ÿ + ๐Ÿ’๐’™ + ๐Ÿ“))

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo