Ex 11.2

Ex 11.2, 1

Ex 11.2, 2

Ex 11.2, 3 Important

Ex 11.2, 4

Ex 11.2, 5 Important

Ex 11.2, 6

Ex 11.2, 7 Important

Ex 11.2, 8 (i) Important

Ex 11.2, 8 (ii)

Ex 11.2, 9 (i) Important

Ex 11.2, 9 (ii)

Ex 11.2, 10 Important

Ex 11.2, 11

Ex 11.2, 12 Important

Ex 11.2, 13 Important

Ex 11.2, 14

Ex 11.2, 15 Important You are here

Question 1 Important Deleted for CBSE Board 2024 Exams

Question 2 Deleted for CBSE Board 2024 Exams

Chapter 11 Class 12 Three Dimensional Geometry

Serial order wise

Last updated at April 16, 2024 by Teachoo

Ex 11.2, 15 Find the shortest distance between the lines whose vector equations are 𝑟 ⃗ = (1 − t) 𝑖 ̂ + (t − 2) 𝑗 ̂ + (3 − 2t) 𝑘 ̂ and 𝑟 ⃗ = (s + 1) 𝑖 ̂ + (2s – 1) 𝑗 ̂ – (2s + 1) 𝑘 ̂ Shortest distance between lines with vector equations 𝑟 ⃗ = (𝑎1) ⃗ + 𝜆 (𝑏1) ⃗ and 𝑟 ⃗ = (𝑎2) ⃗ + 𝜇(𝑏2) ⃗ is |("(" (𝒃𝟏) ⃗× (𝒃𝟐) ⃗")" ."(" (𝒂𝟐) ⃗ − (𝒂𝟏) ⃗")" )/|(𝒃𝟏) ⃗ × (𝒃𝟐) ⃗ | | 𝒓 ⃗ = (𝟏 − t) 𝒊 ̂ + (𝒕−𝟐)𝒋 ̂ + (3 − 2t) 𝒌 ̂ = 1𝑖 ̂ − t𝑖 ̂ + t𝑗 ̂ − 2𝑗 ̂ + 3𝑘 ̂ − 2t𝑘 ̂ = (1𝑖 ̂ − 2𝑗 ̂ + 3𝑘 ̂) + t(−1𝑖 ̂ + 1𝑗 ̂ − 2𝑘 ̂) Comparing with 𝑟 ⃗ = (𝑎1) ⃗ + t (𝑏1) ⃗, (𝑎1) ⃗ = 1𝑖 ̂ – 2𝑗 ̂ + 3𝑘 ̂ & (𝑏1) ⃗ = − 1𝑖 ̂ + 1𝑗 ̂ − 2𝑘 ̂ 𝒓 ⃗ = (𝒔 + 1) 𝒊 ̂ + (𝟐𝒔" − " 𝟏)𝒋 ̂ − (2s + 1) 𝒌 ̂ = s𝑖 ̂ + 1𝑖 ̂ + 2s𝑗 ̂ − 1𝑗 ̂ − 2s𝑘 ̂ − 1𝑘 ̂ = (1𝑖 ̂ − 1𝑗 ̂ − 1𝑘 ̂) + s(1𝑖 ̂ + 2𝑗 ̂ − 2𝑘 ̂) Comparing with 𝑟 ⃗ = (𝑎2) ⃗ + s (𝑏2) ⃗, (𝑎2) ⃗ = 1𝑖 ̂ − 1𝑗 ̂ − 1𝑘 ̂ & (𝑏2) ⃗ = 1𝑖 ̂ + 2𝑗 ̂ − 2𝑘 ̂ Now, ((𝒂𝟐) ⃗ − (𝒂_𝟏 ) ⃗) = (1𝑖 ̂ − 1𝑗 ̂ − 1𝑘 ̂) − (1𝑖 ̂ − 2𝑗 + 3𝑘 ̂) = (1 − 1) 𝑖 ̂ + ( − 1 + 2)𝑗 ̂ + ( − 1 − 3)𝑘 ̂ = 0𝒊 ̂ + 1𝒋 ̂ − 4𝒌 ̂ ( (𝒃_𝟏 ) ⃗× (𝒃_𝟐 ) ⃗ ) = |■8(𝑖 ̂&𝑗 ̂&𝑘 ̂@ −1&1& −2@1&2& −2)| = 𝑖 ̂[(1×− 2)−(2×− 2)] − 𝑗 ̂[(−1×−2)−(1×− 2)] + 𝑘 ̂[(− 1×2)−(1×1)] = 𝑖 ̂[−2+4] − 𝑗 ̂[2+2] A + 𝑘 ̂[−2−1] = 2𝒊 ̂ − 4𝒋 ̂ − 3𝒌 ̂ Magnitude of ((𝑏1) ⃗×(𝑏2) ⃗) = √(22+(− 4)2+(− 3)2) |(𝒃𝟏) ⃗×(𝒃𝟐) ⃗ | = √(4+16+9) = √𝟐𝟗 Also, ((𝒃𝟏) ⃗ × (𝒃𝟐) ⃗) . ((𝒂𝟐) ⃗ – (𝒂𝟏) ⃗) = (2𝑖 ̂ − 4𝑗 ̂ − 3𝑘 ̂) . (0𝑖 ̂ + 1𝑗 ̂ − 4𝑘 ̂) = (2 × 0) + (−4 × 1) + (−3 × −4) = −0 + (−4) + 12 = 8 So, shortest distance = |(((𝑏_1 ) ⃗ × (𝑏_2 ) ⃗ ) . ((𝑎_2 ) ⃗ × (𝑎_1 ) ⃗ ).)/((𝑏_1 ) ⃗ × (𝑏_2 ) ⃗ )| = |8/√29| = 𝟖/√𝟐𝟗 Therefore, the shortest distance between the given two lines is 8/√29 .