Ex 11.2, 15 - Find shortest distance between lines x+1 / 7 - Shortest distance between two skew lines

Slide41.JPG
Slide42.JPG Slide43.JPG

Slide44.JPG Slide45.JPG Slide46.JPG Slide47.JPG

 

  1. Chapter 11 Class 12 Three Dimensional Geometry
  2. Serial order wise
Ask Download

Transcript

Ex 11.2, 15 (Cartesian method) Find the shortest distance between the lines 𝑥 + 1﷮7﷯ = 𝑦 + 1﷮ − 6﷯ = 𝑧 + 1﷮1﷯ and 𝑥 − 3﷮1﷯ = 𝑦 − 5﷮ − 2﷯ = 𝑧 − 7﷮1﷯ Shortest distance between two lines l1: 𝑥 − 𝑥﷮1﷯﷮ 𝑎﷮1﷯﷯ = 𝑦 − 𝑦﷮1﷯﷮ 𝑏﷮1﷯﷯ = 𝑧 − 𝑧﷮1﷯﷮ 𝑐﷮1﷯﷯ l2: 𝑥 − 𝑥﷮2﷯﷮ 𝑎﷮2﷯﷯ = 𝑦 − 𝑦﷮2﷯﷮ 𝑏﷮2﷯﷯ = 𝑧 − 𝑧﷮2﷯﷮ 𝑐﷮2﷯﷯ is 𝒙﷮𝟐﷯ − 𝒙﷮𝟏﷯﷮ 𝒚﷮𝟐﷯ − 𝒚﷮𝟏﷯﷮ 𝒛﷮𝟐﷯ − 𝒛﷮𝟏﷯﷮ 𝒂﷮𝟏﷯﷮ 𝒃﷮𝟏﷯﷮ 𝒄﷮𝟏﷯﷮ 𝒂﷮𝟐﷯﷮ 𝒃﷮𝟐﷯﷮ 𝒄﷮𝟐﷯﷯﷯﷮ ﷮ 𝒂﷮𝟏﷯ 𝒃﷮𝟐﷯ − 𝒂﷮𝟐﷯ 𝒃﷮𝟏﷯﷯﷮𝟐﷯ + 𝒃﷮𝟏﷯ 𝒄﷮𝟐 ﷯− 𝒃﷮𝟐﷯ 𝒄﷮𝟏﷯﷯﷮𝟐﷯ + 𝒄﷮𝟏﷯ 𝒂﷮𝟐﷯ − 𝒄﷮𝟐﷯ 𝒂﷮𝟏﷯﷯﷮𝟐﷯ ﷯﷯﷯ d = 𝑥﷮2﷯− 𝑥﷮1﷯﷮ 𝑦﷮2﷯ − 𝑦﷮1﷯﷮ 𝑧﷮2﷯ − 𝑧﷮1﷯﷮ 𝑎﷮1﷯﷮ 𝑏﷮1﷯﷮ 𝑐﷮1﷯﷮ 𝑎﷮2﷯﷮ 𝑏﷮2﷯﷮ 𝑐﷮2﷯﷯﷯﷮ ﷮ 𝑎﷮1﷯ 𝑏﷮2﷯ − 𝑎﷮2﷯ 𝑏﷮1﷯﷯﷮2﷯ + 𝑏﷮1﷯ 𝑐﷮2 ﷯− 𝑏﷮2﷯ 𝑐﷮1﷯﷯﷮2﷯ + 𝑐﷮1﷯ 𝑎﷮2﷯ − 𝑐﷮2﷯ 𝑎﷮1﷯﷯﷮2﷯ ﷯﷯﷯ d = 3−(−1)﷮5−(−1)﷮7−(−1)﷮7﷮−6﷮1﷮1﷮−2﷮1﷯﷯﷮ ﷮ 7(−2) −1(−6)﷯﷮2﷯ + −6(1)− −2﷯1﷯﷮2﷯ + 1(1) −1(7)﷯﷮2﷯﷯﷯﷯ d = 4﷮6﷮8﷮7﷮−6﷮1﷮1﷮−2﷮1﷯﷯﷮ ﷮ −14 + 6﷯﷮2﷯ + −6 + 2﷯﷮2﷯ + 1 − 7﷯﷮2﷯﷯﷯﷯ d = 4﷮6﷮8﷮7﷮−6﷮1﷮1﷮−2﷮1﷯﷯﷮ ﷮ 8﷯﷮2﷯ + −4﷯﷮2﷯ + −6﷯﷮2﷯﷯﷯﷯ d = 4﷮6﷮8﷮7﷮−6﷮1﷮1﷮−2﷮1﷯﷯﷮ ﷮116﷯﷯﷯ d = 4 −6 1﷯− −2﷯1﷯−6 7 1﷯−1 1﷯﷯+8 7 −2﷯−1 −6﷯﷯﷮ ﷮116﷯﷯﷯ d = 4 −6 + 2﷯−6 7 − 1﷯+8(−14 + 6)﷮ ﷮116﷯﷯﷯ d = −16 − 36 − 64﷮ ﷮116﷯﷯﷯ d = −116﷮ ﷮116﷯﷯﷯ d = − ﷮116﷯﷯ d = ﷮116﷯ d = ﷮4 × 29﷯ d = 𝟐 ﷮𝟐𝟗﷯ Ex 11.2, 15 (Vector method) Find the shortest distance between the lines 𝑥 + 1﷮7﷯ = 𝑦 + 1﷮ − 6﷯ = 𝑧 + 1﷮1﷯ and 𝑥 − 3﷮1﷯ = 𝑦 − 5﷮ − 2﷯ = 𝑧 − 7﷮1﷯ Shortest distance between two lines 𝑟﷯ = 𝑎1﷯ + λ 𝑏1﷯ and 𝑟﷯ = 𝑎2﷯ + μ 𝑏2﷯ is 𝒃𝟏﷯ × 𝒃𝟐﷯ ﷯. 𝒂𝟐﷯ × 𝒂𝟏﷯ ﷯﷮ 𝒃𝟏﷯ × 𝒃𝟐﷯﷯﷯﷯

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 7 years. He provides courses for Mathematics and Science from Class 6 to 12. You can learn personally from here https://www.teachoo.com/premium/maths-and-science-classes/.
Jail