Check sibling questions

Ex 11.2, 14 - Find shortest distance between lines - Ex 11.2

Ex 11.2, 14 - Chapter 11 Class 12 Three Dimensional Geometry - Part 2
Ex 11.2, 14 - Chapter 11 Class 12 Three Dimensional Geometry - Part 3

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Ex 11.2, 14 Find the shortest distance between the lines π‘Ÿ βƒ— = (𝑖 Μ‚ + 2𝑗 Μ‚ + π‘˜ Μ‚) + πœ† (𝑖 Μ‚ βˆ’ 𝑗 Μ‚ + π‘˜ Μ‚) and π‘Ÿ βƒ— = (2𝑖 Μ‚ βˆ’ 𝑗 Μ‚ βˆ’ π‘˜ Μ‚) + πœ‡ (2𝑖 Μ‚ + 𝑗 Μ‚ + 2π‘˜ Μ‚) Shortest distance between the lines with vector equations π‘Ÿ βƒ— = (π‘Ž1) βƒ— + πœ† (𝑏1) βƒ—and π‘Ÿ βƒ— = (π‘Ž2) βƒ— + πœ‡(𝑏2) βƒ— is |(((π’ƒπŸ) βƒ— Γ— (π’ƒπŸ) βƒ— ).((π’‚πŸ) βƒ— βˆ’ (π’‚πŸ) βƒ— ))/|(π’ƒπŸ) βƒ— Γ— (π’ƒπŸ) βƒ— | | Given, 𝒓 βƒ— = (π’Š Μ‚ + 2𝒋 Μ‚ + π’Œ Μ‚) + πœ†(π’Š Μ‚ βˆ’ 𝒋 Μ‚ + π’Œ Μ‚) Comparing with π‘Ÿ βƒ— = (π‘Ž1) βƒ— + πœ† (𝑏1) βƒ—, (π‘Ž1) βƒ— = 1𝑖 Μ‚ + 2𝑗 Μ‚ + 1π‘˜ Μ‚ & (𝑏1) βƒ— = 1𝑖 Μ‚ – 1𝑗 Μ‚ + 1π‘˜ Μ‚ 𝒓 βƒ— = (2π’Š Μ‚ βˆ’ 𝒋 Μ‚ βˆ’ π’Œ Μ‚) + 𝝁 (2π’Š Μ‚ + 𝒋 Μ‚ + 2π’Œ Μ‚) Comparing with π‘Ÿ βƒ— = (π‘Ž2) βƒ— + πœ‡(𝑏2) βƒ— , (π‘Ž2) βƒ— = 2𝑖 Μ‚ – 1𝑗 Μ‚ βˆ’ 1π‘˜ Μ‚ & (𝑏2) βƒ— = 2𝑖 Μ‚ + 1𝑗 Μ‚ + 2π‘˜ Μ‚ Now, (π’‚πŸ) βƒ— βˆ’ (π’‚πŸ) βƒ— = (2𝑖 Μ‚ βˆ’ 1𝑗 Μ‚ βˆ’ 1π‘˜ Μ‚) βˆ’ (1𝑖 Μ‚ + 2𝑗 Μ‚ + 1π‘˜ Μ‚) = (2 βˆ’ 1) 𝑖 Μ‚ + (βˆ’1βˆ’ 2)𝑗 Μ‚ + (βˆ’1 βˆ’ 1) π‘˜ Μ‚ = 1π’Š Μ‚ βˆ’ 3𝒋 Μ‚ βˆ’ 2π’Œ Μ‚ (π’ƒπŸ) βƒ— Γ— (π’ƒπŸ) βƒ— = |β– 8(𝑖 Μ‚&𝑗 Μ‚&π‘˜ Μ‚@1& βˆ’1&[email protected]&1&2)| = 𝑖 Μ‚ [(βˆ’1Γ— 2)βˆ’(1Γ—1)] βˆ’ 𝑗 Μ‚ [(1Γ—2)βˆ’(2Γ—1)] + π‘˜ Μ‚ [(1Γ—1)βˆ’(2Γ—βˆ’1)] = 𝑖 Μ‚ [βˆ’2βˆ’1] βˆ’ 𝑗 Μ‚ [2βˆ’2] + π‘˜ Μ‚ [1+2] = βˆ’3π’Š Μ‚ βˆ’ 0𝒋 Μ‚ + 3π’Œ Μ‚ Magnitude of ((𝑏1) βƒ— Γ— (𝑏2) βƒ—) = √((βˆ’3)2+(0)2+32) |(π’ƒπŸ) βƒ— Γ— (π’ƒπŸ) βƒ— | = √(9+0+9) = √18 = √(9 Γ— 2) = 3√𝟐 Also, ((𝑏1) βƒ— Γ— (𝑏2) βƒ—) . ((π‘Ž2) βƒ— – (π‘Ž1) βƒ—) = (βˆ’ 3𝑖 Μ‚βˆ’0𝑗 Μ‚+3π‘˜ Μ‚).(1𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ βˆ’ 2π‘˜ Μ‚) = (βˆ’3Γ—1)".(" 0Γ—βˆ’"3)" + (3 Γ— βˆ’2) = βˆ’3 βˆ’ 0 βˆ’ 6 = βˆ’9 So, shortest distance = |(((𝑏_1 ) βƒ— Γ— (𝑏_2 ) βƒ— ).((π‘Ž_2 ) βƒ— βˆ’ (π‘Ž_1 ) βƒ— ))/|(𝑏_1 ) βƒ— Γ— (𝑏_2 ) βƒ— | | = |( βˆ’9)/(3√2)| = 3/√2 = 3/√2 Γ— √2/√2 = (πŸ‘βˆšπŸ)/𝟐 Therefore, shortest distance between the given two lines is (3√2)/2.

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.