Check sibling questions

Ex 11.2, 16 - Find shortest distance between r = (i + 2j + 3k)

Ex 11.2, 16 - Chapter 11 Class 12 Three Dimensional Geometry - Part 2
Ex 11.2, 16 - Chapter 11 Class 12 Three Dimensional Geometry - Part 3


Transcript

Ex 11.2, 16 Find the shortest distance between the lines whose vector equations are 𝑟 ⃗ = (𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂) + 𝜆 (𝑖 ̂ – 3𝑗 ̂ + 2𝑘 ̂) and 𝑟 ⃗ = (4𝑖 ̂ + 5𝑗 ̂ + 6𝑘 ̂) + 𝜇 (2𝑖 ̂ + 3𝑗 ̂ + 𝑘 ̂)Shortest distance between the lines with vector equations 𝑟 ⃗ = (𝑎_1 ) ⃗ + 𝜆 (𝑏"1" ) ⃗ and 𝑟 ⃗ = (𝑎"2" ) ⃗ + 𝜇(𝑏"2" ) ⃗ is |(((𝒃𝟏) ⃗ × (𝒃𝟐) ⃗ ).((𝒂𝟐) ⃗ − (𝒂𝟏) ⃗ ))/|(𝒃𝟏) ⃗ × (𝒃𝟐) ⃗ | | Given, 𝒓 ⃗ = (𝒊 ̂ + 2𝒋 ̂ + 3𝒌 ̂) + 𝜆 (𝒊 ̂ − 3𝒋 ̂ + 2𝒌 ̂) Comparing with 𝑟 ⃗ = (𝑎1) ⃗ + 𝜆 (𝑏1) ⃗, (𝑎1) ⃗ = 1𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂ & (𝑏1) ⃗ = 1𝑖 ̂ − 3𝑗 ̂ + 2𝑘 ̂ 𝒓 ⃗ = (4𝒊 ̂ + 5𝒋 ̂ + 6𝒌 ̂) + 𝝁(2𝒊 ̂ + 3𝒋 ̂ + 𝒌 ̂) Comparing with 𝑟 ⃗ = (𝑎2) ⃗ + 𝜇(𝑏2) ⃗, (𝑎2) ⃗ = 4𝑖 ̂ + 5𝑗 ̂ + 6𝑘 ̂ & (𝑏2) ⃗ = 2𝑖 ̂ + 3𝑗 ̂ + 1𝑘 ̂ Now, ((𝒂𝟐) ⃗ − (𝒂𝟏) ⃗) = (4𝑖 ̂ + 5𝑗 ̂ + 6𝑘 ̂) − (1𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂) = (4 − 1)𝑖 ̂ + (5 − 2) 𝑗 ̂ + (6 − 3) 𝑘 = 3𝒊 ̂ + 3𝒋 ̂ + 3𝒌 ̂ ((𝒃𝟏) ⃗ × (𝒃𝟐) ⃗) = |■8(𝑖 ̂&𝑗 ̂&𝑘 ̂@1& −3&[email protected]&3&1)| = 𝑖 ̂ [(−3×1)−(3×2)] − 𝑗 ̂ [(1×1)−(2×2)] + 𝑘 ̂ [(1×3)−(2×−3)] = 𝑖 ̂ [−3−6] − 𝑗 ̂ [1−4] + 𝑘 ̂ [3+6] = 𝑖 ̂ (−9) − 𝑗 ̂ (−3) + 𝑘 ̂(9) = − 9𝒊 ̂ + 3𝒋 ̂ + 9𝒌 ̂ Magnitude of ((𝑏1) ⃗ × (𝑏2) ⃗) = √((− 9)2+32+92) |(𝒃𝟏) ⃗" × " (𝒃𝟐) ⃗ | = √(81+9+81) = √171 = √(9×19 ) = 3√𝟏𝟗 Also, ((𝒃𝟏) ⃗ × (𝒃𝟐) ⃗) . ((𝒂𝟐) ⃗ – (𝒂𝟏) ⃗) = (−9𝑖 ̂ + 3𝑗 ̂ + 9𝑘 ̂).(3𝑖 ̂ + 3𝑗 ̂ + 3𝑘 ̂) = (−9 × 3) + (3 × 3) + (9 × 3) = −27 + 9 + 27 = 9 So, shortest distance = |("(" (𝑏1) ⃗×" " (𝑏2) ⃗")" ."(" (𝑎2) ⃗ −" " (𝑎1) ⃗")" )/|(𝑏1) ⃗× (𝑏2) ⃗ | | = |9/(3√19)| = 𝟑/√𝟏𝟗 Therefore, shortest distance between the given two lines is 3/√19.

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.