Check sibling questions

Ex 11.2, 16 - Find shortest distance between r = (i + 2j + 3k)

Ex 11.2, 16 - Chapter 11 Class 12 Three Dimensional Geometry - Part 2
Ex 11.2, 16 - Chapter 11 Class 12 Three Dimensional Geometry - Part 3

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Ex 11.2, 14 Find the shortest distance between the lines whose vector equations are π‘Ÿ βƒ— = (𝑖 Μ‚ + 2𝑗 Μ‚ + 3π‘˜ Μ‚) + πœ† (𝑖 Μ‚ – 3𝑗 Μ‚ + 2π‘˜ Μ‚) and π‘Ÿ βƒ— = (4𝑖 Μ‚ + 5𝑗 Μ‚ + 6π‘˜ Μ‚) + πœ‡ (2𝑖 Μ‚ + 3𝑗 Μ‚ + π‘˜ Μ‚)Shortest distance between the lines with vector equations π‘Ÿ βƒ— = (π‘Ž_1 ) βƒ— + πœ† (𝑏"1" ) βƒ— and π‘Ÿ βƒ— = (π‘Ž"2" ) βƒ— + πœ‡(𝑏"2" ) βƒ— is |(((π’ƒπŸ) βƒ— Γ— (π’ƒπŸ) βƒ— ).((π’‚πŸ) βƒ— βˆ’ (π’‚πŸ) βƒ— ))/|(π’ƒπŸ) βƒ— Γ— (π’ƒπŸ) βƒ— | | Given, 𝒓 βƒ— = (π’Š Μ‚ + 2𝒋 Μ‚ + 3π’Œ Μ‚) + πœ† (π’Š Μ‚ βˆ’ 3𝒋 Μ‚ + 2π’Œ Μ‚) Comparing with π‘Ÿ βƒ— = (π‘Ž1) βƒ— + πœ† (𝑏1) βƒ—, (π‘Ž1) βƒ— = 1𝑖 Μ‚ + 2𝑗 Μ‚ + 3π‘˜ Μ‚ & (𝑏1) βƒ— = 1𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ + 2π‘˜ Μ‚ 𝒓 βƒ— = (4π’Š Μ‚ + 5𝒋 Μ‚ + 6π’Œ Μ‚) + 𝝁(2π’Š Μ‚ + 3𝒋 Μ‚ + π’Œ Μ‚) Comparing with π‘Ÿ βƒ— = (π‘Ž2) βƒ— + πœ‡(𝑏2) βƒ—, (π‘Ž2) βƒ— = 4𝑖 Μ‚ + 5𝑗 Μ‚ + 6π‘˜ Μ‚ & (𝑏2) βƒ— = 2𝑖 Μ‚ + 3𝑗 Μ‚ + 1π‘˜ Μ‚ Now, ((π’‚πŸ) βƒ— βˆ’ (π’‚πŸ) βƒ—) = (4𝑖 Μ‚ + 5𝑗 Μ‚ + 6π‘˜ Μ‚) βˆ’ (1𝑖 Μ‚ + 2𝑗 Μ‚ + 3π‘˜ Μ‚) = (4 βˆ’ 1)𝑖 Μ‚ + (5 βˆ’ 2) 𝑗 Μ‚ + (6 βˆ’ 3) π‘˜ = 3π’Š Μ‚ + 3𝒋 Μ‚ + 3π’Œ Μ‚ ((π’ƒπŸ) βƒ— Γ— (π’ƒπŸ) βƒ—) = |β– 8(𝑖 Μ‚&𝑗 Μ‚&π‘˜ Μ‚@1& βˆ’3&[email protected]&3&1)| = 𝑖 Μ‚ [(βˆ’3Γ—1)βˆ’(3Γ—2)] βˆ’ 𝑗 Μ‚ [(1Γ—1)βˆ’(2Γ—2)] + π‘˜ Μ‚ [(1Γ—3)βˆ’(2Γ—βˆ’3)] = 𝑖 Μ‚ [βˆ’3βˆ’6] βˆ’ 𝑗 Μ‚ [1βˆ’4] + π‘˜ Μ‚ [3+6] = 𝑖 Μ‚ (βˆ’9) βˆ’ 𝑗 Μ‚ (βˆ’3) + π‘˜ Μ‚(9) = βˆ’ 9π’Š Μ‚ + 3𝒋 Μ‚ + 9π’Œ Μ‚ Magnitude of ((𝑏1) βƒ— Γ— (𝑏2) βƒ—) = √((βˆ’ 9)2+32+92) |(π’ƒπŸ) βƒ—" Γ— " (π’ƒπŸ) βƒ— | = √(81+9+81) = √171 = √(9Γ—19 ) = 3βˆšπŸπŸ— Also, ((π’ƒπŸ) βƒ— Γ— (π’ƒπŸ) βƒ—) . ((π’‚πŸ) βƒ— – (π’‚πŸ) βƒ—) = (βˆ’9𝑖 Μ‚ + 3𝑗 Μ‚ + 9π‘˜ Μ‚).(3𝑖 Μ‚ + 3𝑗 Μ‚ + 3π‘˜ Μ‚) = (βˆ’9 Γ— 3) + (3 Γ— 3) + (9 Γ— 3) = βˆ’27 + 9 + 27 = 9 So, shortest distance = |("(" (𝑏1) βƒ—Γ—" " (𝑏2) βƒ—")" ."(" (π‘Ž2) βƒ— βˆ’" " (π‘Ž1) βƒ—")" )/|(𝑏1) βƒ—Γ— (𝑏2) βƒ— | | = |9/(3√19)| = πŸ‘/βˆšπŸπŸ— Therefore, shortest distance between the given two lines is 3/√19.

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.