


Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 11.2
Ex 11.2, 2
Ex 11.2, 3 Important
Ex 11.2, 4
Ex 11.2, 5 Important
Ex 11.2, 6
Ex 11.2, 7 Important
Ex 11.2, 8
Ex 11.2, 9 Important
Ex 11.2, 10 (i) Important
Ex 11.2, 10 (ii)
Ex 11.2, 11 (i) Important
Ex 11.2, 11 (ii) You are here
Ex 11.2, 12 Important
Ex 11.2, 13
Ex 11.2, 14 Important
Ex 11.2, 15 Important
Ex 11.2, 16
Ex 11.2, 17 Important
Last updated at Aug. 24, 2021 by Teachoo
Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Angle between the pair of lines (𝑥 − 𝑥1)/𝑎1 = (𝑦 − 𝑦1)/𝑏1 = (𝑧 − 𝑧1)/𝑐1 and (𝑥 − 𝑥2)/𝑎2 = (𝑦 − 𝑦2)/𝑏2 = (𝑧 − 𝑧2)/𝑐2 is given by cos θ = |(𝒂_𝟏 𝒂_𝟐 + 𝒃_𝟏 𝒃_𝟐 +〖 𝒄〗_𝟏 𝒄_𝟐)/(√(〖𝒂_𝟏〗^𝟐 + 〖𝒃_𝟏〗^𝟐+ 〖𝒄_𝟏〗^𝟐 ) √(〖𝒂_𝟐〗^𝟐 +〖〖 𝒃〗_𝟐〗^𝟐+ 〖𝒄_𝟐〗^𝟐 ))| 𝒙/𝟐 = 𝒚/𝟐 = 𝒛/𝟏 (𝑥 − 0)/2 = (𝑦 − 0)/2 = (𝑧 − 0)/1 Comparing with (𝑥 − 𝑥1)/𝑎1 = (𝑦 − 𝑦1)/𝑏1 = (𝑧 − 𝑧1)/𝑐1 x1 = 0, y1 = 0, z1 = 0 & 𝑎1 = 2, b1 = 2, c1 = 1 (𝒙 − 𝟓)/𝟒 = (𝒚 − 𝟐)/𝟏 = (𝒛 − 𝟓)/𝟖 Comparing with (𝑥 − 𝑥2)/𝑎2 = (𝑦 − 𝑦2)/𝑏2 = (𝑧 − 𝑧2)/𝑐2 𝑥2 = 5, y2 = 2, z2 = 5 & 𝑎2 = 4, 𝑏2 = 1, 𝑐2 = 8 Now, cos θ = |(𝒂_𝟏 𝒂_𝟐 + 𝒃_𝟏 𝒃_𝟐 +〖 𝒄〗_𝟏 𝒄_𝟐)/(√(〖𝒂_𝟏〗^𝟐 + 〖𝒃_𝟏〗^𝟐+ 〖𝒄_𝟏〗^𝟐 ) √(〖𝒂_𝟐〗^𝟐 +〖〖 𝒃〗_𝟐〗^𝟐+ 〖𝒄_𝟐〗^𝟐 ))| = |((2 × 4) + (2 × 1) + (1 × 8) )/(√(22 + 22 + 12) × √(42 + 12 + 82))| = |(8 + 2 + 8 )/(√(4 + 4 + 1) √(16 + 1 + 64))| = |18/(√9 × √81)| = 18/(3 × 9) = 2/3 So, cos θ = 2/3 ∴ θ = cos-1 (𝟐/𝟑) Therefore, the angle between the given lines is cos−1(𝟐/𝟑).