Now learn Economics at Teachoo for Class 12

Ex 11.2

Ex 11.2, 1

Ex 11.2, 2

Ex 11.2, 3 Important

Ex 11.2, 4

Ex 11.2, 5 Important

Ex 11.2, 6

Ex 11.2, 7 Important

Ex 11.2, 8

Ex 11.2, 9 Important

Ex 11.2, 10 (i) Important Deleted for CBSE Board 2022 Exams You are here

Ex 11.2, 10 (ii)

Ex 11.2, 11 (i) Important Deleted for CBSE Board 2022 Exams

Ex 11.2, 11 (ii)

Ex 11.2, 12 Important

Ex 11.2, 13

Ex 11.2, 14 Important

Ex 11.2, 15 Important

Ex 11.2, 16

Ex 11.2, 17 Important

Chapter 11 Class 12 Three Dimensional Geometry (Term 2)

Serial order wise

Last updated at Aug. 24, 2021 by Teachoo

Ex 11.2, 10 Find the angle between the following pairs of lines: (i) 𝑟 ⃗ = 2𝑖 ̂− 5𝑗 ̂ + 𝑘 ̂ + 𝜆 (3𝑖 ̂ + 2𝑗 ̂ + 6𝑘 ̂) and 𝑟 ⃗ = 7𝑖 ̂ – 6𝑘 ̂ + 𝜇(𝑖 ̂ + 2𝑗 ̂ + 2𝑘 ̂) Ex 11.2, 10 Find the angle between the following pairs of lines: (i) 𝑟 ⃗ = 2𝑖 ̂− 5𝑗 ̂ + 𝑘 ̂ + 𝜆 (3𝑖 ̂ + 2𝑗 ̂ + 6𝑘 ̂) and 𝑟 ⃗ = 7𝑖 ̂ – 6𝑘 ̂ + 𝜇(𝑖 ̂ + 2𝑗 ̂ + 2𝑘 ̂) Angle between two vectors 𝑟 ⃗ = (𝑎1) ⃗ + 𝜆 (𝑏1) ⃗ & 𝑟 ⃗ = (𝑎2) ⃗ + 𝜇 (𝑏2) ⃗ is given by cos θ = |((𝒃𝟏) ⃗ . (𝒃𝟐) ⃗)/|(𝒃𝟏) ⃗ ||(𝒃𝟐) ⃗ | | Given, the pair of lines is 𝒓 ⃗ = (2𝒊 ̂ − 5𝒋 ̂ + 𝒌 ̂) + 𝜆 (3𝒊 ̂ + 2𝒋 ̂ + 6𝒌 ̂) So, (𝑎1) ⃗ = 2𝑖 ̂ − 5𝑗 ̂ + 1𝑘 ̂ (𝑏1) ⃗ = 3𝑖 ̂ + 2𝑗 ̂ + 6𝑘 ̂ 𝒓 ⃗ = (7𝒊 ̂ − 6𝒌 ̂) + 𝝁 (𝒊 ̂ + 2𝒋 ̂ + 2𝒌 ̂) So, (𝑎2) ⃗ = 7𝑖 ̂ + 0𝑗 ̂ − 6𝑘 ̂ (𝑏2) ⃗ = 1𝑖 ̂ + 2𝑗 ̂ + 2𝑘 ̂ Now, (𝑏1) ⃗.(𝑏2) ⃗ = (3𝑖 ̂ + 2𝑗 ̂ + 6𝑘 ̂) . (1𝑖 ̂ + 2𝑗 ̂ + 2𝑘 ̂) = (3 × 1) + (2 × 2) + (6 × 2) = 3 + 4 + 12 = 19 Magnitude of (𝑏1) ⃗ = √(32 + 22 + 62) |(𝑏1) ⃗ | = √(9 + 4 + 36) = √49 = 7 Magnitude of (𝑏2) ⃗ = √(12+22+22) |(𝑏2) ⃗ | = √(1+4+4) = √9 = 3 Now, cos θ = |((𝑏1) ⃗.(𝑏2) ⃗)/|(𝑏1) ⃗ ||(𝑏2) ⃗ | | cos θ = |19/(7 × 3 )| cos θ = 19/(21 ) ∴ θ = cos−1 (𝟏𝟗/(𝟐𝟏 )) Therefore, the angle between the given vectors is cos −1(19/(21 ))