


Introducing your new favourite teacher - Teachoo Black, at only ₹83 per month
Ex 11.2
Ex 11.2, 2
Ex 11.2, 3 Important
Ex 11.2, 4
Ex 11.2, 5 Important
Ex 11.2, 6
Ex 11.2, 7 Important
Ex 11.2, 8
Ex 11.2, 9 Important
Ex 11.2, 10 (i) Important
Ex 11.2, 10 (ii) You are here
Ex 11.2, 11 (i) Important
Ex 11.2, 11 (ii)
Ex 11.2, 12 Important
Ex 11.2, 13
Ex 11.2, 14 Important
Ex 11.2, 15 Important
Ex 11.2, 16
Ex 11.2, 17 Important
Last updated at Aug. 24, 2021 by Teachoo
Ex 11.2, 10 Find the angle between the following pairs of lines: (ii) 𝑟 ⃗ = (3𝑖 ̂ + 𝑗 ̂ − 2𝑘 ̂) + 𝜆 (𝑖 ̂ − 𝑗 ̂ − 2𝑘 ̂) and 𝑟 ⃗ = (2𝑖 ̂ − 𝑗 ̂ − 56𝑘 ̂) + 𝜇 (3𝑖 ̂ – 5𝑗 ̂ − 4𝑘 ̂) Angle between two vectors 𝑟 ⃗ = (𝑎1) ⃗ + 𝜆 (𝑏1) ⃗ & 𝑟 ⃗ = (𝑎2) ⃗ + 𝜇 (𝑏2) ⃗ is given by cos θ = |((𝒃𝟏) ⃗ . (𝒃𝟐) ⃗)/|(𝒃𝟏) ⃗ ||(𝒃𝟐) ⃗ | | Given, the pair of lines is 𝒓 ⃗ = (3𝒊 ̂ + 𝒋 ̂ − 2𝒌 ̂) + 𝜆 (𝒊 ̂ − 𝒋 ̂ − 2𝒌 ̂) So , (𝑎1) ⃗= 3𝑖 ̂ + 1𝑗 ̂ − 2𝑘 ̂ (𝑏1) ⃗ = 1𝑖 ̂ − 1𝑗 ̂ − 2𝑘 ̂ 𝒓 ⃗ = (2𝒊 ̂ − 𝒋 ̂ − 56𝒌 ̂) + 𝝁 (𝟑𝒊 ̂ – 5𝒋 ̂ − 4𝒌 ̂) So, (𝑎2) ⃗ = 2𝑖 ̂ − 1𝑗 ̂ − 56𝑘 ̂ (𝑏2) ⃗ = 3𝑖 ̂ − 5𝑗 ̂ − 4𝑘 ̂ Now, (𝑏1) ⃗. (𝑏2) ⃗ = (1𝑖 ̂ − 1𝑗 ̂ − 2𝑘 ̂).(3𝑖 ̂ − 5𝑗 ̂ − 4𝑘 ̂) = (1 × 3) + ( −1 × −5) + ( −2 × –4) = 3 + 5 + 8 = 16 Magnitude of (𝑏1) ⃗ = √(1^2+(−1)^2+(−2)^2 ) |(𝑏1) ⃗ | = √(1+1+4) = √6 Magnitude of (𝑏2) ⃗ = √(3^2+(−5)^2+( −4)2) |(𝑏2) ⃗ | = √(9+25+16) = √50 = √(25×2) = 5√2 Now, cos θ = |((𝑏1) ⃗.(𝑏2) ⃗)/|(𝑏1) ⃗ ||(𝑏2) ⃗ | | = |16/(√6 × 5√2)| = |16/(√3 × √2 × 5 × √2)| = |16/(√3 × 2 × 5 )| = 8/(5√3 ) ∴ θ = cos-1 (8/(5√3 )) Therefore, the angle between the given vectors is cos − 1(8/(5√3 ))