Slide22.JPG Slide23.JPG Slide24.JPG

 

You saved atleast 2 minutes of distracting ads by going ad-free. Thank you :)

You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.


Transcript

Ex 11.2, 8 Find the angle between the following pairs of lines: (ii) 𝑟 ⃗ = (3𝑖 ̂ + 𝑗 ̂ − 2𝑘 ̂) + 𝜆 (𝑖 ̂ − 𝑗 ̂ − 2𝑘 ̂) and 𝑟 ⃗ = (2𝑖 ̂ − 𝑗 ̂ − 56𝑘 ̂) + 𝜇 (3𝑖 ̂ – 5𝑗 ̂ − 4𝑘 ̂)Angle between two vectors 𝑟 ⃗ = (𝑎1) ⃗ + 𝜆 (𝑏1) ⃗ & 𝑟 ⃗ = (𝑎2) ⃗ + 𝜇 (𝑏2) ⃗ is given by cos θ = |((𝒃𝟏) ⃗ . (𝒃𝟐) ⃗)/|(𝒃𝟏) ⃗ ||(𝒃𝟐) ⃗ | | Given, the pair of lines is 𝒓 ⃗ = (3𝒊 ̂ + 𝒋 ̂ − 2𝒌 ̂) + 𝜆 (𝒊 ̂ − 𝒋 ̂ − 2𝒌 ̂) So , (𝑎1) ⃗= 3𝑖 ̂ + 1𝑗 ̂ − 2𝑘 ̂ (𝑏1) ⃗ = 1𝑖 ̂ − 1𝑗 ̂ − 2𝑘 ̂ 𝒓 ⃗ = (2𝒊 ̂ − 𝒋 ̂ − 56𝒌 ̂) + 𝝁 (𝟑𝒊 ̂ – 5𝒋 ̂ − 4𝒌 ̂) So, (𝑎2) ⃗ = 2𝑖 ̂ − 1𝑗 ̂ − 56𝑘 ̂ (𝑏2) ⃗ = 3𝑖 ̂ − 5𝑗 ̂ − 4𝑘 ̂ Now, (𝒃𝟏) ⃗. (𝒃𝟐) ⃗ = (1𝑖 ̂ − 1𝑗 ̂ − 2𝑘 ̂).(3𝑖 ̂ − 5𝑗 ̂ − 4𝑘 ̂) = (1 × 3) + ( −1 × −5) + ( −2 × –4) = 3 + 5 + 8 = 16 Magnitude of (𝑏1) ⃗ = √(1^2+(−1)^2+(−2)^2 ) |(𝒃𝟏) ⃗ | = √(1+1+4) = √𝟔 Magnitude of (𝑏2) ⃗ = √(3^2+(−5)^2+( −4)2) |(𝒃𝟐) ⃗ | = √(9+25+16) = √50 = √(25×2) = 5√𝟐 Now, cos θ = |((𝑏1) ⃗.(𝑏2) ⃗)/|(𝑏1) ⃗ ||(𝑏2) ⃗ | | = |𝟏𝟔/(√𝟔 × 𝟓√𝟐)| = |16/(√3 × √2 × 5 × √2)| = |16/(√3 × 2 × 5 )| = 8/(5√3 ) ∴ θ = cos-1 (8/(5√3 )) Therefore, the angle between the given vectors is cos − 1(8/(5√3 ))

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo