Miscellaneous

Misc 1
Important

Misc 2

Misc 3 Important

Misc 4

Misc 5 Important

Misc 6

Misc 7 Important

Misc 8 Important

Misc 9

Misc 10

Misc 11 Important

Misc 12 Important

Misc 13 You are here

Misc 14 Important

Misc 15 Important

Misc 16 (MCQ) Important

Misc 17 (MCQ) Important

Misc 18 (MCQ) Important

Misc 19 (MCQ) Important

Last updated at April 16, 2024 by Teachoo

Misc 13 The scalar product of the vector 𝑖 ̂ + 𝑗 ̂ + 𝑘 ̂ with a unit vector along the sum of vectors 2𝑖 ̂ + 4𝑗 ̂ − 5𝑘 ̂ and λ𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂ is equal to one. Find the value of λ. Let 𝒂 ⃗ = 𝑖 ̂ + 𝑗 ̂ + 𝑘 ̂ 𝒃 ⃗ = 2𝑖 ̂ + 4𝑗 ̂ – 5𝑘 ̂ 𝒄 ⃗ = 𝜆 𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂ (𝒃 ⃗ + 𝒄 ⃗) = (2 + 𝜆) 𝑖 ̂ + (4 + 2) 𝑗 ̂ + (−5 + 3) 𝑘 ̂ = (2 + 𝜆) 𝒊 ̂ + 6𝒋 ̂ − 2𝒌 ̂ Let 𝒓 ̂ be unit vector along (𝑏 ⃗ + 𝑐 ⃗) 𝑟 ̂ = 1/(𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 (𝑏 ⃗" + " 𝑐 ⃗)) × (𝑏 ⃗ + 𝑐 ⃗) 𝑟 ̂ = 1/√((2 + 𝜆)^2 + 6^2 + (−2)^2 ) × ((2 + 𝜆) 𝑖 ̂ + 6𝑗 ̂ − 2𝑘 ̂) 𝑟 ̂ = 1/√(2^2 + 𝜆^2 + 4𝜆 + 36 + 4) × ((2 + 𝜆) 𝑖 ̂ + 6𝑗 ̂ − 2𝑘 ̂) 𝒓 ̂ = 𝟏/√(𝝀^𝟐 + 𝟒𝝀 +𝟒𝟒) × ((2 + 𝜆) 𝒊 ̂ + 6𝒋 ̂ − 2𝒌 ̂) Given, 𝒂 ⃗. (𝒓 ̂) = 1 (1𝑖 ̂ + 1𝑗 ̂ + 1𝑘 ̂). (1/√(𝜆^2 + 4𝜆 +44) " × ((2 + 𝜆) " 𝑖 ̂" + 6" 𝑗 ̂" − 2" 𝑘 ̂")" ) = 1 1/√(𝜆^2 + 4𝜆 +44) (1𝑖 ̂ + 1𝑗 ̂ + 1𝑘 ̂).((𝜆 +2) 𝑖 ̂ + 6𝑗 ̂ − 2𝑘 ̂) = 1 (1𝑖 ̂ + 1𝑗 ̂ + 1𝑘 ̂).((𝜆 +2) 𝑖 ̂ + 6𝑗 ̂ − 2𝑘 ̂) = √(𝜆^2 + 4𝜆 +44) 1.(𝜆 + 2) + 1.6 + 1.(−2) = √(𝜆^2 + 4𝜆 +44) 𝜆 + 2 + 6 − 2 = √(𝜆^2 + 4𝜆 +44) 𝜆 + 6 = √(𝝀^𝟐 + 𝟒𝝀 +𝟒𝟒) Squaring both sides (𝜆 + 6)2 = (√(𝜆^2 + 4𝜆 +44))^2 𝜆2 + 36 + 12𝜆 = 𝜆^2 + 4𝜆 +44 8𝜆 = 8 𝜆 = 8/8 𝜆 = 1 So, 𝜆 = 1