Miscellaneous

Misc 1
Important

Misc 2

Misc 3 Important

Misc 4 You are here

Misc 5 Important

Misc 6

Misc 7 Important

Misc 8 Important

Misc 9

Misc 10

Misc 11 Important

Misc 12 Important

Misc 13

Misc 14 Important

Misc 15 Important

Misc 16 (MCQ) Important

Misc 17 (MCQ) Important

Misc 18 (MCQ) Important

Misc 19 (MCQ) Important

Last updated at April 16, 2024 by Teachoo

Misc 4 If 𝑎 ⃗ = 𝑏 ⃗ + 𝑐 ⃗ , then is it true that |𝑎 ⃗|=|𝑏 ⃗| + |𝑐 ⃗| Justify your answer.Given, 𝒂 ⃗ = 𝒃 ⃗ + 𝒄 ⃗ Let 𝒃 ⃗ = 1𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂ & 𝒄 ⃗ = 2𝑖 ̂ − 1𝑗 ̂ − 2𝑘 ̂ Thus, 𝒂 ⃗ = (𝑏 ⃗ + 𝑐 ⃗) = (1 + 2) 𝑖 ̂ + (2 − 1) 𝑗 ̂ + (3 − 2) 𝑘 ̂ = 3𝒊 ̂ + 1𝒋 ̂ + 1𝒌 ̂ Given, 𝒂 ⃗ = 𝒃 ⃗ + 𝒄 ⃗ Let 𝒃 ⃗ = 1𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂ & 𝒄 ⃗ = 2𝑖 ̂ − 1𝑗 ̂ − 2𝑘 ̂ Thus, 𝒂 ⃗ = (𝑏 ⃗ + 𝑐 ⃗) = (1 + 2) 𝑖 ̂ + (2 − 1) 𝑗 ̂ + (3 − 2) 𝑘 ̂ = 3𝒊 ̂ + 1𝒋 ̂ + 1𝒌 ̂ Given, 𝒂 ⃗ = 𝒃 ⃗ + 𝒄 ⃗ Let 𝒃 ⃗ = 1𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂ & 𝒄 ⃗ = 2𝑖 ̂ − 1𝑗 ̂ − 2𝑘 ̂ Thus, 𝒂 ⃗ = (𝑏 ⃗ + 𝑐 ⃗) = (1 + 2) 𝑖 ̂ + (2 − 1) 𝑗 ̂ + (3 − 2) 𝑘 ̂ = 3𝒊 ̂ + 1𝒋 ̂ + 1𝒌 ̂ Finding |𝒂 ⃗ |, |𝒃 ⃗ | , |𝒄 ⃗ | Magnitude of 𝑎 ⃗ = √(32+1^2+1^2 ) |𝒂 ⃗ | = √(9+1+1) = √𝟏𝟏 Magnitude of 𝑏 ⃗ = √(12+22+32) |𝒃 ⃗ | = √(1+4+9) = √𝟏𝟒 Magnitude of 𝑐 ⃗ = √(22+(−1)2+(−2)2) |𝒄 ⃗ | = √(4+1+4) = √9 = 3 Now, |𝒃 ⃗ | + |𝒄 ⃗ | = √14 + 3 ≠ √11 ≠ |𝒂 ⃗ | So, |𝑎 ⃗ |≠ |𝑏 ⃗ | + |𝑐 ⃗ | Hence, the given statement is False.