

Last updated at April 22, 2021 by Teachoo
Transcript
Misc 6 Find a vector of magnitude 5 units, and parallel to the resultant of the vectors ๐ โ = 2๐ ฬ + 3๐ ฬ โ ๐ ฬ and ๐ โ = ๐ ฬ โ 2๐ ฬ + ๐ ฬ.Given ๐ โ = 2๐ ฬ + 3๐ ฬ โ ๐ ฬ(, ๐) โ = ๐ ฬ โ 2๐ ฬ + ๐ ฬ Resultant of ๐ โ & ๐ โ = ๐ โ + ๐ โ (๐ โ + ๐ โ) = (2 + 1)๐ ฬ + (3 โ 2)๐ ฬ + (โ1 + 1)๐ ฬ = 3๐ ฬ + 1๐ ฬ + 0๐ ฬ Let ๐ โ = (๐ โ + ๐ โ) โด ๐ โ = 3๐ ฬ + 1๐ ฬ + 0๐ ฬ Magnitude of ๐ โ = โ(32+12+02) |๐ โ | = โ(9+1) = โ10 Unit vector in direction of ๐ โ = 1/|๐ โ | ร ๐ โ ๐ ฬ = 1/โ10 ร [3๐ ฬ+1๐ ฬ+0๐ ฬ ] ๐ ฬ = ๐/โ๐๐ ๐ ฬ + ๐/โ๐๐ ๐ ฬ + 0๐ ฬ Vector with magnitude 1 = 3/โ10 ๐ ฬ + 1/โ10 ๐ ฬ + 0๐ ฬ Vector with magnitude 5 = 5 ร [3/โ10 " " ๐ ฬ" + " 1/โ10 ๐ ฬ" + 0" ๐ ฬ ] = 15/โ10 ๐ ฬ + 5/โ10 ๐ ฬ + 0๐ ฬ = 15/โ10 ๐ ฬ + 5/โ10 ๐ ฬ Rationalizing = 15/โ10 ร โ10/โ10 ๐ ฬ + 5/โ10 "ร " โ10/โ10 ๐ ฬ = (15โ10)/10 ๐ ฬ + (5โ10)/10 ๐ ฬ = (๐โ๐๐)/๐ ๐ ฬ + โ๐๐/๐ ๐ ฬ Hence the required vector is (๐โ๐๐)/๐ ๐ ฬ + โ๐๐/๐ ๐ ฬ
Miscellaneous
Misc 2
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6 You are here
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10 Important
Misc 11 Important
Misc 12 Important
Misc 13 Important
Misc 14 Important
Misc 15 Important
Misc 16 Important
Misc 17 Important
Misc 18 Important
Misc 19 Important
About the Author