Question 1 - Ex 9.2 - Chapter 9 Class 11 Straight Lines
Last updated at April 16, 2024 by Teachoo
Ex 9.2
Ex 9.2, 2
Ex 9.2, 3
Ex 9.2, 4 Important
Ex 9.2, 5
Ex 9.2, 6 Important
Ex 9.2, 7
Ex 9.2, 8 Important
Ex 9.2, 9
Ex 9.2, 10 Important
Ex 9.2, 11
Ex 9.2, 12
Ex 9.2, 13 Important
Ex 9.2, 14 Important
Ex 9.2, 15
Ex 9.2, 16 Important
Ex 9.2, 17 Important
Ex 9.2, 18 Important
Ex 9.2, 19
Question 1 Important Deleted for CBSE Board 2025 Exams You are here
Last updated at April 16, 2024 by Teachoo
Question 1 Find the equation of the line which is at a perpendicular distance of 5 units from the origin and the angle made by the perpendicular with the positive x-axis is 30° We need to calculate equation of line Perpendicular distance of line from origin is 5 units & Normal makes an angle of 30° with the positive x-axis By the normal from Equation of line is x cos ω + y sin ω = p. where, p = normal distance from the origin & ω = angle which makes by the normal with positive x-axis Here p = 5 & ω = 30° Putting values x cos ω + y sin ω = p x cos 30° + y sin 30° = 5 x √3/2 + y 1/2 = 5 (√3 𝑥 + 𝑦)/2 = 5 √𝟑 𝒙 + y = 10 Thus, equation of line is √3 𝑥 + y = 10