Ex 10.2, 8 - Line which is at a perpendicular distance of 5 units

Ex 10.2, 8 - Chapter 10 Class 11 Straight Lines - Part 2


Transcript

Question 1 Find the equation of the line which is at a perpendicular distance of 5 units from the origin and the angle made by the perpendicular with the positive x-axis is 30° We need to calculate equation of line Perpendicular distance of line from origin is 5 units & Normal makes an angle of 30° with the positive x-axis By the normal from Equation of line is x cos ω + y sin ω = p. where, p = normal distance from the origin & ω = angle which makes by the normal with positive x-axis Here p = 5 & ω = 30° Putting values x cos ω + y sin ω = p x cos 30° + y sin 30° = 5 x √3/2 + y 1/2 = 5 (√3 𝑥 + 𝑦)/2 = 5 √𝟑 𝒙 + y = 10 Thus, equation of line is √3 𝑥 + y = 10

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.