



Ex 10.2
Ex 10.2, 2
Ex 10.2, 3
Ex 10.2, 4 Important You are here
Ex 10.2, 5
Ex 10.2, 6 Important
Ex 10.2, 7
Ex 10.2, 8 Important
Ex 10.2, 9 Important
Ex 10.2, 10
Ex 10.2, 11 Important
Ex 10.2, 12
Ex 10.2, 13
Ex 10.2, 14 Important
Ex 10.2, 15 Important
Ex 10.2, 16
Ex 10.2, 17 Important
Ex 10.2, 18 Important
Ex 10.2, 19 Important
Ex 10.2, 20
Ex 10.2
Last updated at Feb. 3, 2020 by Teachoo
Ex 10.2, 4 Find the equation of the line which passes though (2, 2√3) and is inclined with the x-axis at an angle of 75°. We know that equation of line passing through point (x0, y0) with slope m is y – y0 = m(x – x0) Here Point (x0, y0) = (2, 2√3) Hence x0 = 2, y0 = 2√3 And slope = m = tan θ Given θ = 75° ∴ m = tan(75°) = tan (45 + 30)° = tan〖45° + 〖 tan〗〖30°〗 〗/(1 − tan〖45°tan〖30°〗 〗 ) = (1 + 1/√3)/(1 − 1/√3) = ((√3 + 1)/√3)/((√3 − 1)/√3) = (√3 + 1)/√3 × √3/(√3 − 1) = (√3 + 1)/(√3 − 1) ∴ m = (√3 + 1)/(√(3 ) − 1) ("Using " 𝑡𝑎𝑛〖(𝐴+𝐵)= 𝑡𝑎𝑛〖𝐴 + 𝑡𝑎𝑛𝐵 〗/(1 − 𝑡𝑎𝑛〖𝐴 𝑡𝑎𝑛𝐵 〗 )〗 ) Putting values in (y – y0) = m (x – x0) (y – 2√3) = (√3 + 1)/(√3 − 1) (x – 2) (y – 2√3) (√3 − 1) = (√3 + 1) (x – 2) y (√3 −1) – 2√3 (√3 − 1) = x(√3 + 1) – 2 (√3 + 1) y (√3 − 1) – 2√3 × √3 + 2√3 = x(√3 + 1) – 2√3 – 2 y (√3 − 1) – 6 + 2√3 = x(√3 + 1) – 2√3 – 2 y (√3 − 1) = x(√3 + 1) – 2√3 – 2 + 6 – 2√3 y (√3 − 1) = x(√3 + 1) – 4√3 + 4 y (√3 − 1) – x (√3 + 1) = –4√3 + 4 y (√3 − 1) – x (√3 + 1) = 4(–√3 + 1) x (√𝟑 + 1) – y(√𝟑 – 1) = 4(√𝟑 − 1)