This Page is Locked

Get access to this page and all premium solutions, videos, and worksheets by joining Teachoo Black.

  • βœ… 100% Ad-free learning
  • βœ… HD video solutions in Hinglish
  • βœ… Worksheets & Sample Papers
  • βœ… Step-by-step explanations
  • βœ… Access on any device
Unlock All Content (less than β‚Ή2/day)
Trusted by thousands of parents & students
Remove Ads

Transcript

Question 33 (A) Evaluate: ∫_0^1β€Š(log (1 + π‘₯))/(1 + π‘₯^2 ) 𝑑π‘₯We know that (𝑑(tan^(βˆ’1)⁑π‘₯))/𝑑π‘₯=1/(1 + π‘₯^2 ) Since we have 1/(1 + π‘₯^2 ), we put x = tan πœƒ Thus, 𝑑π‘₯=sec^2β‘πœƒ π‘‘πœƒ Change the limits of integration: When 𝒙=𝟎,tanβ‘πœƒ=0⟹𝜽=𝟎 When 𝒙=𝟏,tanβ‘πœƒ=1⟹𝜽=𝝅/πŸ’ The denominator becomes 1+π‘₯^2=1+tan^2β‘πœƒ=〖𝒔𝒆𝒄〗^𝟐⁑𝜽. Now, 𝐼=∫130_0^1β–’β€Š (log⁑(1 + π‘₯))/(1 + π‘₯^2 ) 𝑑π‘₯ After Substitution 𝐼=∫130_0^(πœ‹/4)β–’β€Šβ€Š(log⁑(1 + tanβ‘πœƒ))/(sec^2β‘πœƒ) sec^2β‘πœƒπ‘‘πœƒ 𝑰=∫130_𝟎^(𝝅/πŸ’)β–’β€Šβ€Šπ₯𝐨𝐠⁑(𝟏+𝐭𝐚𝐧⁑𝜽)π’…πœ½β–‘( ) Now, we know that ∫130_0^π‘Žβ–’β€Š 𝑓(π‘₯)𝑑π‘₯=∫130_0^π‘Žβ–’β€Š 𝑓(π‘Žβˆ’π‘₯)𝑑π‘₯ Applying this property to Equation 1, with π‘Ž=πœ‹/4 and the variable being πœƒ : 𝐼=∫130_0^(πœ‹/4)β–’β€Š log⁑(1+tan⁑(πœ‹/4βˆ’πœƒ))π‘‘πœƒ Using π‘‘π‘Žπ‘›β‘(π΄βˆ’π΅)=(π‘‘π‘Žπ‘›β‘π΄βˆ’π‘‘π‘Žπ‘›β‘π΅)/(1+π‘‘π‘Žπ‘›β‘π΄π‘‘π‘Žπ‘›β‘π΅) : 𝐼=∫130_0^(πœ‹/4)β–’β€Š log⁑(1+(tan⁑(πœ‹/4)βˆ’ tanβ‘πœƒ)/(1 + tan⁑(πœ‹/4)tanβ‘πœƒ))π‘‘πœƒ 𝐼=∫130_0^(πœ‹/4)β–’β€Š log⁑(1+(1 βˆ’ tanβ‘πœƒ)/(1 + tanβ‘πœƒ))π‘‘πœƒ 𝐼=∫130_0^(πœ‹/4)β–’β€Š log⁑(((1 + tanβ‘πœƒ )+ (1 βˆ’tanβ‘πœƒ ))/(1 +tanβ‘πœƒ ))π‘‘πœƒ 𝐼=∫130_0^(πœ‹/4)β–’β€Š log(2/(1+tanβ‘πœƒ))π‘‘πœƒ Using the logarithm property log⁑(π‘Ž/𝑏)=logβ‘π‘Žβˆ’log⁑𝑏 𝑰=∫130_𝟎^(𝝅/πŸ’)β–’β€Š [π’π’π’ˆβ‘πŸβˆ’π’π’π’ˆβ‘(𝟏+π’•π’‚π’β‘πœ½ ) ]π’…πœ½β–‘( ) Now, Adding (1) and (2) 𝐼+𝐼=∫130_0^(πœ‹/4)β–’β€Šβ€Šlog⁑(1+tanβ‘πœƒ)π‘‘πœƒ+∫130_0^(πœ‹/4)β–’β€Šβ€Š|log⁑2βˆ’log⁑(1+tanβ‘πœƒ)|π‘‘πœƒ 2𝐼=∫130_0^(πœ‹/4)β–’β€Šβ€Š|log⁑(1+tanβ‘πœƒ)+log⁑2βˆ’log⁑(1+tanβ‘πœƒ)|π‘‘πœƒ πŸπ‘°=∫130_𝟎^(𝝅/πŸ’)β–’β€Š π’π’π’ˆβ‘πŸ π’…πœ½ Since log⁑2 is a constant: 2𝐼=log⁑2 ∫130_0^(πœ‹/4)β–’β€Šβ€Š1π‘‘πœƒ 2𝐼=log 2 Γ— |πœƒ|_0^(πœ‹/4) 2𝐼=log⁑〖2 Γ—γ€— (πœ‹/4βˆ’0) 2𝐼=πœ‹/4 log 2 𝑰=𝝅/πŸ– π’π’π’ˆβ‘πŸ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo