This question is similar to Chapter 4 Class 12 Determinants - Examples

Please check the question here

https://www.teachoo.com/3304/694/Example-33---Use-product-to-solve-x-y-2z1-2y-3z1-3x-2y-4z2-/category/Examples/

 

Slide76.JPG

Slide77.JPG
Slide78.JPG Slide79.JPG Slide80.JPG

 

Remove Ads

Transcript

Question 32 For two matrices ๐ด=[โ– (3&โˆ’6&โˆ’1@2&โˆ’5&โˆ’1@โˆ’2&4&1)] and ๐ต=[โ– (1&โˆ’2&โˆ’1@0&โˆ’1&โˆ’1@2&0&3)], find the product ๐ด๐ต and hence solve the system of equations: 3๐‘ฅโˆ’6๐‘ฆโˆ’๐‘ง=3 2๐‘ฅโˆ’5๐‘ฆโˆ’๐‘ง+2=0 โˆ’2๐‘ฅ+4๐‘ฆ+๐‘ง=5Finding the product AB = [โ– (3&โˆ’6&โˆ’1@2&โˆ’5&โˆ’1@โˆ’2&4&1)] [โ– (1&โˆ’2&โˆ’1@0&โˆ’1&โˆ’1@2&0&3)] =[โ– 8(3(1)+(โคถ7โˆ’6)(0)+(โˆ’1)(2)&3(โˆ’2)+(โˆ’6)(โˆ’1)+(โˆ’1)(0)&3(โˆ’1)+(โˆ’6)(โˆ’1)+(โˆ’1)(3)@2(1)+(โˆ’5)(0)+(โˆ’1)(2)&2(โˆ’2)+(โˆ’5)(โˆ’1)+(โˆ’1)(0)&2(โˆ’1)+(โˆ’5)(โˆ’1)+(โˆ’1)(3)@(โˆ’2)(1)+4(0)+1(2)&(โˆ’2)(โˆ’2)+4(โˆ’1)+1(0)&(โˆ’2)(โˆ’1)+4(โˆ’1)+1(3))] = [โ– 8(1@0@0)" " โ– 8(0@1@0)" " โ– 8(0@0@1)] Thus, AB = I We know that AA-1 = I So ๐‘ฉ is inverse of A Now, solving the equation Given equations are 3๐‘ฅโˆ’6๐‘ฆโˆ’๐‘ง=3 2๐‘ฅโˆ’5๐‘ฆโˆ’๐‘ง=โˆ’2 โˆ’2๐‘ฅ+4๐‘ฆ+๐‘ง=5 Writing the equation as AX = D [โ– (3&โˆ’6&โˆ’1@2&โˆ’5&โˆ’1@โˆ’2&4&1)][โ– 8(๐‘ฅ@๐‘ฆ@๐‘ง)] = [โ– 8(3@โˆ’2@5)] Here A =[โ– (3&โˆ’6&โˆ’1@2&โˆ’5&โˆ’1@โˆ’2&4&1)], X = [โ– 8(๐‘ฅ@๐‘ฆ@๐‘ง)] & D = [โ– 8(3@โˆ’2@5)] Now, AX = D X = A-1 D Putting A-1 = ๐‘ฉ=[โ– (1&โˆ’2&โˆ’1@0&โˆ’1&โˆ’1@2&0&3)] So, our equation becomes [โ– 8(๐‘ฅ@๐‘ฆ@๐‘ง)] =[โ– (1&โˆ’2&โˆ’1@0&โˆ’1&โˆ’1@2&0&3)][โ– 8(3@โˆ’2@5)] [โ– 8(๐‘ฅ@๐‘ฆ@๐‘ง)] = [โ– 8(1(3)+(โคถ7โˆ’2)(โˆ’2)+(โˆ’1) (5)@0(3)+(โˆ’1)(โˆ’2)+(โˆ’1)(5)@2(3)+0(โˆ’2)+3(5))] [โ– 8(๐‘ฅ@๐‘ฆ@๐‘ง)] = [โ– 8(3+4โˆ’5@0+2โˆ’5@6+0+15)] [โ– 8(๐‘ฅ@๐‘ฆ@๐‘ง)] = [โ– 8(2@โˆ’3@21)] Hence x = 2 , y = โˆ’3 & z = 21

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo