This question is similar to Chapter 4 Class 12 Determinants - Examples
Please check the question here




CBSE Class 12 Sample Paper for 2026 Boards
CBSE Class 12 Sample Paper for 2026 Boards
Last updated at Sept. 2, 2025 by Teachoo
This question is similar to Chapter 4 Class 12 Determinants - Examples
Please check the question here
Transcript
Question 32 For two matrices ๐ด=[โ (3&โ6&โ1@2&โ5&โ1@โ2&4&1)] and ๐ต=[โ (1&โ2&โ1@0&โ1&โ1@2&0&3)], find the product ๐ด๐ต and hence solve the system of equations: 3๐ฅโ6๐ฆโ๐ง=3 2๐ฅโ5๐ฆโ๐ง+2=0 โ2๐ฅ+4๐ฆ+๐ง=5Finding the product AB = [โ (3&โ6&โ1@2&โ5&โ1@โ2&4&1)] [โ (1&โ2&โ1@0&โ1&โ1@2&0&3)] =[โ 8(3(1)+(โคถ7โ6)(0)+(โ1)(2)&3(โ2)+(โ6)(โ1)+(โ1)(0)&3(โ1)+(โ6)(โ1)+(โ1)(3)@2(1)+(โ5)(0)+(โ1)(2)&2(โ2)+(โ5)(โ1)+(โ1)(0)&2(โ1)+(โ5)(โ1)+(โ1)(3)@(โ2)(1)+4(0)+1(2)&(โ2)(โ2)+4(โ1)+1(0)&(โ2)(โ1)+4(โ1)+1(3))] = [โ 8(1@0@0)" " โ 8(0@1@0)" " โ 8(0@0@1)] Thus, AB = I We know that AA-1 = I So ๐ฉ is inverse of A Now, solving the equation Given equations are 3๐ฅโ6๐ฆโ๐ง=3 2๐ฅโ5๐ฆโ๐ง=โ2 โ2๐ฅ+4๐ฆ+๐ง=5 Writing the equation as AX = D [โ (3&โ6&โ1@2&โ5&โ1@โ2&4&1)][โ 8(๐ฅ@๐ฆ@๐ง)] = [โ 8(3@โ2@5)] Here A =[โ (3&โ6&โ1@2&โ5&โ1@โ2&4&1)], X = [โ 8(๐ฅ@๐ฆ@๐ง)] & D = [โ 8(3@โ2@5)] Now, AX = D X = A-1 D Putting A-1 = ๐ฉ=[โ (1&โ2&โ1@0&โ1&โ1@2&0&3)] So, our equation becomes [โ 8(๐ฅ@๐ฆ@๐ง)] =[โ (1&โ2&โ1@0&โ1&โ1@2&0&3)][โ 8(3@โ2@5)] [โ 8(๐ฅ@๐ฆ@๐ง)] = [โ 8(1(3)+(โคถ7โ2)(โ2)+(โ1) (5)@0(3)+(โ1)(โ2)+(โ1)(5)@2(3)+0(โ2)+3(5))] [โ 8(๐ฅ@๐ฆ@๐ง)] = [โ 8(3+4โ5@0+2โ5@6+0+15)] [โ 8(๐ฅ@๐ฆ@๐ง)] = [โ 8(2@โ3@21)] Hence x = 2 , y = โ3 & z = 21