# Misc 26

Last updated at Dec. 8, 2016 by Teachoo

Last updated at Dec. 8, 2016 by Teachoo

Transcript

Misc 26 Show that (1 × 22 + 2 × 32 + … + n × (n + 1)2)/(12 × 2 + 22 × 3 + … + n2 × (n + 1)) = (3n + 5)/(3n + 1) Taking L.H.S (1 × 22 + 2 × 32 + … + n × (n + 1)2)/(12 × 2 + 22 × 3 + … + n2 × (n + 1)) We solve denominator & numerator separately Solving numerator Let numerator be S1 = 1 × 22 + 2 × 32 + … + n × (n + 1)2 nth term is n × (n + 1)2 Let an = n(n + 1)2 = n(n2 + 1 + 2n) = n3 + n + 2n2 Now finding S1 = ((𝑛(𝑛 + 1))/2)^2 + 2(( 𝑛(𝑛+1)(2𝑛+1))/6) + n(n+1)/2 = (𝑛(𝑛 + 1))/2 (n(n+1)/2 " + " (2(2𝑛+1))/3 " + 1" ) = (𝑛(𝑛 + 1))/2 (( 3𝑛(𝑛+1) + 2 × 2(2𝑛+1)+ 6)/6) = (n(n + 1))/(2 × 6)[3n(n + 1) + 4(2n + 1) + 6] = (n(n + 1))/12[3n2 + 3n + 8n + 4 + 6] = (𝑛(𝑛 + 1))/12[3n2 + 11n + 10] = (𝑛(𝑛 + 1))/12[3n2 + 5n + 6n + 10] = (𝑛(𝑛 + 1))/12[n(3n + 5) + 2(3n + 5)] = (𝑛(𝑛 + 1))/12[(n + 2)(3n + 5)] Thus, S1 = (𝑛(𝑛 + 1))/12[(n + 2)(3n + 5)] Now solving denominator Let denominator be S2 = 12 × 2 + 22 × 3 + … + n2 × (n + 1) nth term is n2(n + 1) Let bn = n2(n + 1) bn = n3 + n2 Now, calculating S2 = ((𝑛(𝑛 + 1))/2)^2 + (( 𝑛(𝑛+1)(2𝑛+1))/6) = (𝑛(𝑛 + 1))/2 (n(n+1)/2 " + " ((2𝑛+1))/3) = (𝑛(𝑛 + 1))/2 (n(n+1)/2 " + " ((2𝑛+1))/3) = (𝑛(𝑛 + 1))/2 (( 3𝑛(𝑛+1) + 2 (2𝑛+1))/6) = (n(n + 1))/(2 × 6) (3n(n + 1) + 2(2n + 1)) = (n(n + 1))/12 (3n2 + 3n + 2(2n + 1)) = (n(n + 1))/12 (3n2 + 3n + 4n + 2) = (n(n+1))/12 (3n2 + 7n +2) = (n(n+1))/12 (3n2 + 6n + n +2) = (n(n+1))/12 (3n(n + 2) + 1(n +2)) = (n(n+1)(n+2)(3n+1))/12 Thus, S2 = (n(n+1)(n+2)(3n+1))/12 Now, Taking L.H.S (1 × 22 + 2 × 32 + … + n × (n + 1)2)/(12 × 2 + 22 × 3 + … + n2 × (n + 1)) = 𝑆1/𝑆2 = ((n(n+1)(n+2)(3n+5))/12)/((n(n+1)(n+2)(3n+1))/12) = (n(n+1)(n+2)(3n+5))/12 × 12/(n(n+1)(n+2)(3n+1)) = (n(n+1)(n+2)(3n+5))/(n(n+1)(n+2)(3n+1)) = ((3n+5))/((3n+1)) = R.H.S Hence L.H.S = R.H.S Hence proved.

Misc 1

Misc 2

Misc 3 Important

Misc 4

Misc 5

Misc 6

Misc 7 Important

Misc 8

Misc 9

Misc 10

Misc 11

Misc 12

Misc 13

Misc 14

Misc 15

Misc 16 Important

Misc 17

Misc 18

Misc 19 Important

Misc 20

Misc 21

Misc 22

Misc 23

Misc 24

Misc 25 Important

Misc 26 You are here

Misc 27

Misc 28 Important

Misc 29

Misc 30

Misc 31

Misc 32 Important

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He provides courses for Mathematics from Class 9 to 12. You can ask questions here.