Slide39.JPG

Slide40.JPG

Slide41.JPG
Slide42.JPG
Slide43.JPG Slide44.JPG Slide45.JPG


Transcript

Misc 9 If a and b are the roots of x2 – 3x + p = 0 and c,d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17:15. Introduction For quadratic equation ax2 + bx + c = 0 Product of roots = 𝑐/𝑎 & sum of roots = (−𝑏)/𝑎 Misc 18 If a and b are the roots of x2 – 3x + p = 0 and c,d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17:15. Introduction For quadratic equation ax2 + bx + c = 0 Product of roots = 𝑐/𝑎 & sum of roots = (−𝑏)/𝑎 Misc 18 If a and b are the roots of x2 – 3x + p = 0 and c,d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17:15. We know that a, ar , ar2 , ar3, …. are in G.P. with first term a & common ratio r Given a, b, c, d are in G.P. So, a = a b = ar c = ar2 d = ar3 We have to prove (𝑞 + 𝑝)/(𝑞 − 𝑝) = 17/15 Taking L.H.S (𝑞 + 𝑝)/(𝑞 − 𝑝) Putting value of p = ab & q = cd from (2) & (4) = (𝑐𝑑 + 𝑎𝑏)/(𝑐𝑑 − 𝑎𝑏) We know that a, ar , ar2 , ar3, …. are in G.P. with first term a & common ratio r Given a, b, c, d are in G.P. So, a = a b = ar c = ar2 d = ar3 We have to prove (𝑞 + 𝑝)/(𝑞 − 𝑝) = 17/15 Taking L.H.S (𝑞 + 𝑝)/(𝑞 − 𝑝) Putting value of p = ab & q = cd from (2) & (4) = (𝑐𝑑 + 𝑎𝑏)/(𝑐𝑑 − 𝑎𝑏) We know that a, ar , ar2 , ar3, …. are in G.P. with first term a & common ratio r Given a, b, c, d are in G.P. So, a = a b = ar c = ar2 d = ar3 We have to prove (𝑞 + 𝑝)/(𝑞 − 𝑝) = 17/15 Taking L.H.S (𝑞 + 𝑝)/(𝑞 − 𝑝) Putting value of p = ab & q = cd from (2) & (4) = (𝑐𝑑 + 𝑎𝑏)/(𝑐𝑑 − 𝑎𝑏) = (𝑐𝑑 + 𝑎𝑏)/(𝑐𝑑 − 𝑎𝑏) Putting values b = ar , c = ar2 , d = ar3 = ((𝑎𝑟^2 )(𝑎𝑟^3 ) + 𝑎(𝑎𝑟))/((𝑎𝑟^2 )(𝑎𝑟^3 ) − 𝑎(𝑎𝑟)) = (𝑎2𝑟4 + 𝑎2𝑟)/(𝑎2𝑟4 − 𝑎2𝑟) = (𝑎2𝑟4 + 𝑎2𝑟)/(𝑎2𝑟4 − 𝑎2𝑟) = (𝑎2𝑟(𝑟4 + 1))/(𝑎2𝑟(𝑟4 − 1 )) = (𝑟4 + 1 )/(𝑟4 − 1) So, (𝑞 + 𝑝)/(𝑞 − 𝑝) = (𝑟4 + 1 )/(𝑟4 − 1), we need to find r first. = (𝑐𝑑 + 𝑎𝑏)/(𝑐𝑑 − 𝑎𝑏) Putting values b = ar , c = ar2 , d = ar3 = ((𝑎𝑟^2 )(𝑎𝑟^3 ) + 𝑎(𝑎𝑟))/((𝑎𝑟^2 )(𝑎𝑟^3 ) − 𝑎(𝑎𝑟)) = (𝑎2𝑟4 + 𝑎2𝑟)/(𝑎2𝑟4 − 𝑎2𝑟) = (𝑎2𝑟4 + 𝑎2𝑟)/(𝑎2𝑟4 − 𝑎2𝑟) = (𝑎2𝑟(𝑟4 + 1))/(𝑎2𝑟(𝑟4 − 1 )) = (𝑟4 + 1 )/(𝑟4 − 1) So, (𝑞 + 𝑝)/(𝑞 − 𝑝) = (𝑟4 + 1 )/(𝑟4 − 1), we need to find r first. Now Dividing (1) & (3) (𝑎 + 𝑏)/(𝑐 + 𝑑) = 3/12 Putting values b = ar , c = ar2 , d = ar3 (𝑎 + 𝑎𝑟)/(𝑎𝑟2 +𝑎𝑟3) = 3/12 (𝑎(1 + 𝑟))/(𝑎𝑟2(1 + 𝑟)) = 3/12 1/𝑟2 = 3/12 1/𝑟2 = 1/4 r2 = 4 Now, (𝑞 + 𝑝)/(𝑞 − 𝑝) = (𝑟4 + 1 )/(𝑟4 − 1), Putting r2 = 4 = (4^2 + 1 )/(4^2 − 1) = (16 + 1)/(16 − 1) = (17 )/15 = R.H.S Thus, L.H.S = R.H.S Hence proved

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.