Question 9 - Miscellaneous - Chapter 8 Class 11 Sequences and Series
Last updated at Dec. 13, 2024 by Teachoo
Miscellaneous
Misc 2
Misc 3
Misc 4 Important
Misc 5
Misc 6
Misc 7 Important
Misc 8
Misc 9
Misc 10 Important
Misc 11 (i) Important
Misc 11 (ii)
Misc 12 Important
Misc 13
Misc 14 Important
Misc 15 Important
Misc 16
Misc 17 Important
Misc 18 Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6 Important
Question 7
Question 8
Question 9 Important You are here
Question 10
Question 11 Important
Question 12
Question 13 Important
Question 14
Miscellaneous
Last updated at Dec. 13, 2024 by Teachoo
Misc 16 If a(1/( ) " + " 1/ ), b(1/ " + " 1/ ), c(1/ " + " 1/ ) are in AP., prove that a, b, c are in AP Given that a(1/( ) " + " 1/ ), b(1/ " + " 1/ ), c(1/ " + " 1/ ) are in AP. If a(1/( ) " + " 1/ ), b(1/ " + " 1/ ), c(1/ " + " 1/ ) are in AP Adding 1 to each term a(1/( ) " + " 1/ ) + 1, b(1/ " + " 1/ ) + 1, c(1/ " + " 1/ ) + 1 are in AP a(1/( ) " + " 1/ ) + / , b(1/ " + " 1/ ) + / , c(1/ " + " 1/ ) + / are in AP a (1/( ) " + " 1/ " + " 1/ ) , b(1/ " + " 1/ " + " 1/( )) , c(1/ " + " 1/( ) " + " 1/ ) are in AP Divide each term by (1/ " + " 1/( ) " + " 1/ ) (1/( ) " + " 1/ " + " 1/ )/(1/ " + " 1/( ) " + " 1/ ), (1/ " + " 1/ " + " 1/( ))/(1/ " + " 1/( ) " + " 1/ ), (1/ " + " 1/( ) " + " 1/ )/(1/ " + " 1/( ) " + " 1/ ) are in AP a, b, c are AP Hence, a, b, c, are in AP Hence proved