Get live Maths 1-on-1 Classs - Class 6 to 12

Miscellaneous

Misc 1
Deleted for CBSE Board 2023 Exams

Misc 2 Deleted for CBSE Board 2023 Exams

Misc 3 Important Deleted for CBSE Board 2023 Exams

Misc 4 Deleted for CBSE Board 2023 Exams

Misc 5 Deleted for CBSE Board 2023 Exams You are here

Misc 6 Important Deleted for CBSE Board 2023 Exams

Misc 7 Important

Misc 8

Misc 9

Misc 10 Important

Misc 11

Misc 12

Misc 13

Misc 14 Important

Misc 15 Deleted for CBSE Board 2023 Exams

Misc 16 Important Deleted for CBSE Board 2023 Exams

Misc 17

Misc 18

Misc 19 Important

Misc 20

Misc 21 (i) Important Deleted for CBSE Board 2023 Exams

Misc 21 (ii) Deleted for CBSE Board 2023 Exams

Misc 22 Important Deleted for CBSE Board 2023 Exams

Misc 23 Important Deleted for CBSE Board 2023 Exams

Misc 24 Deleted for CBSE Board 2023 Exams

Misc 25 Important Deleted for CBSE Board 2023 Exams

Misc 26 Deleted for CBSE Board 2023 Exams

Misc 27 Deleted for CBSE Board 2023 Exams

Misc 28 Important Deleted for CBSE Board 2023 Exams

Misc 29 Important

Misc 30 Deleted for CBSE Board 2023 Exams

Misc 31 Important

Misc 32 Important Deleted for CBSE Board 2023 Exams

Last updated at March 16, 2023 by Teachoo

Misc 5 Find the sum of integers from 1 to 100 that are divisible by 2 or 5. Sum of integers divisible by 2 or 5 = Sum of integers divisible by 2 + Sum of integers divisible by 5 – Sum of integers divisible by 2 & 5 Finding sum of numbers from 1 to 100 divisible by 2 Integers divisible by 2 between 1 to 100 are 2, 4, 6, 8, …100 This forms an A.P. as difference of consecutive terms is constant. First term = a = 2 common difference d = 4 – 2 Last term = l = 100 2, 4, 6, 8, …100 Number of terms = n = (100 )/2 = 50 For finding sum, we use the formula Sn = n/2 [a + l] Here, n = 50 , l = 100 & a = 2 Sn = 50/2 (2 + 100) = 25 × 102 = 2550 Hence, sum of numbers from 1 to 100 divisible by 2 is 2550 Finding sum of numbers from 1 to 100 divisible by 5 Integer between 1 to 100 which are divisible by 5 are 5, 10, 15, 20, 25, 30, … 100 This forms an A.P. as difference of consecutive terms is constant Here, First term a = 5 Common difference d = 10 – 5 Last term l = 100 First we calculate number of terms in this AP We know that an = a + (n – 1)d where an = nth term , n = number of terms, a = first term , d = common difference Here, an = last term = l = 100, a = 5 , d = 5 Putting values 100 = 5 + (n – 1) 5 100 – 5 = (n – 1)5 95 = (n – 1)5 95/5 = (n – 1) 19 = n – 1 19 + 1 = n 20 = n n = 20 For finding sum, we use the formula Sn = n/2 [a + l] Here, n = 20 , l = 100 & a = 5 = 20/2 ( 5 + 100) =10 (105) = 1050 Hence, sum of numbers from 1 to 100 divisible by 5 is 1050 Finding sum of numbers from 1 to 100 divisible by 2 & 5 both Integers between 1 to 100 which are divisible by both 2 and 5 are 10, 20, 30,… ,90,100. This forms an A.P. as difference of consecutive terms is constant Here, First term = a = 10 Common difference d = 20 – 10 Last term = l = 100 & Number of terms = n = 10 For finding sum, we use the formula Sn = n/2 [a + l] Here, n = 20 , l = 100 & a = 5 S10 = 10/2 ( 10 + 100) = 5 (110) = 550 Hence, sum of numbers from 1 to 100 divisible by 5 & 2 both is 550 Now finding sum of integers from 1 to 100 which are divisibly by 2 or 5 Sum of integers divisible by 2 or 5 = Sum of integers divisible by 2 + Sum of integers divisible by 5 – Sum of integers divisible by 2 & 5 = 2550 + 1050 – 550 = 3050 Thus, sum of integers from 1 to 100 which are divisible by 2 or 5 is 3050