




Introducing your new favourite teacher - Teachoo Black, at only ₹83 per month
Miscellaneous
Misc 2
Misc 3 Important
Misc 4
Misc 5
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9
Misc 10 Important You are here
Misc 11
Misc 12
Misc 13
Misc 14 Important
Misc 15
Misc 16 Important
Misc 17
Misc 18
Misc 19 Important
Misc 20
Misc 21 (i) Important
Misc 21 (ii)
Misc 22 Important
Misc 23 Important
Misc 24
Misc 25 Important
Misc 26
Misc 27
Misc 28 Important
Misc 29 Important
Misc 30
Misc 31 Important
Misc 32 Important
Last updated at Sept. 3, 2021 by Teachoo
Misc 10 The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an arithmetic progression. Find the numbers. Let the numbers in G.P. be a, ar, and ar2. It is given that Sum of these number is 56 a + ar + ar2 = 56 ar2 = 56 a ar Also, When 1, 7, 21 subtracting from these number respectively, the new numbers are in AP So, (a 1) , (ar 7) , (ar2 21) are in AP Common difference is same (ar 7) (a 1) = (ar2 21) (ar 7) ar a 6 = ar2 ar 14 ar2 ar ar + a 14 + 6 = 0 ar2 2ar + a 8 = 0 From (1) putting ar2 = 56 a ar (56 a ar) 2ar + a 8 = 0 56 a ar 2ar + a 8 = 0 -a + a ar 2ar + 56 8 = 0 0 3ar + 48 = 0 -3ar = -48 ar = ( 48)/( 3) ar = 16 a = 16/ Putting a = (16 )/ in (1) a + ar + ar2 = 56 a(1 + r + r2) = 56 16/ (1 + r + r2) = 56 (16 (1+ + 2))/ = 56 (16 (1+ + 2))/ = 56 16(1 + r + r2) = 56r 16 + 16r + 16r2 56r = 0 16r2 + 16r 56r + 16 = 0 8(2r2 5r + 2) = 0 (2r2 5r + 2) = 0/8 2r2 5r + 2 = 0 2r2 4r r + 2 = 0 2r(r 2) 1(r 2) = 0 (2r 1)(r 2) = 0 2r 1 = 0 or r 2 = 0 2r = 1 or r = 2 r = 1/2 or r = 2 Now, finding numbers Thus the numbers are 8, 16, 32 for r = 1/2 & a =32 & 32, 16, 8 for r = 2 & a = 8