


Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Miscellaneous
Misc 2
Misc 3
Misc 4 Important
Misc 5
Misc 6
Misc 7 Important
Misc 8
Misc 9
Misc 10 Important
Misc 11 (i) Important
Misc 11 (ii)
Misc 12 Important
Misc 13
Misc 14 Important
Misc 15 Important
Misc 16
Misc 17 Important
Misc 18 Important
Question 1 Deleted for CBSE Board 2024 Exams
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams
Question 4 Deleted for CBSE Board 2024 Exams You are here
Question 5 Deleted for CBSE Board 2024 Exams
Question 6 Important Deleted for CBSE Board 2024 Exams
Question 7 Deleted for CBSE Board 2024 Exams
Question 8 Deleted for CBSE Board 2024 Exams
Question 9 Important Deleted for CBSE Board 2024 Exams
Question 10 Deleted for CBSE Board 2024 Exams
Question 11 Important Deleted for CBSE Board 2024 Exams
Question 12 Deleted for CBSE Board 2024 Exams
Question 13 Important Deleted for CBSE Board 2024 Exams
Question 14 Deleted for CBSE Board 2024 Exams
Miscellaneous
Last updated at May 29, 2023 by Teachoo
Question 4 Find the sum of all numbers between 200 and 400 which are divisible by 7. Numbers between 200 & 400 are 201, 202,203,… ,398,399 Finding minimum number in 201, 202,203,… ,398,399 which is divisible by 7 201/7 = 285/7 202/7 = 286/7 203/7 = 29 So the series will start from 203 Finding maximum number 201, 202,203,… ,398,399 by 7 399/7 = 57 So the series will end at 399 So, series will start from 203 and end at 399 Thus, all natural number between 200 & 400 which are divisible by 7 are 203, 210, 217, … 392, 399 This sequence forms an A.P. as difference between the consecutive terms is constant. Here first term a = 203 Common difference d = 210 – 203 & last term = l = 399 First we need to find number of terms, i.e. n We know that an = a + (n – 1)d where an = nth term , n = number of terms, a = first term , d = common difference Here, an = last term = l = 399 , a = 203 , d = 7 Putting values 399 = 203 + (n –1) 7 399 – 203 = (n –1) 7 196 = (n –1)7 196/7 = (n –1) 28 = n –1 28 + 1 = n 29 = n n = 29 For finding sum, we use the formula Sn = n/2 [a + l] Here, n = 29 , l = 399& a = 203 S29 = 29/2 (203 + 399) = 29/2 (602) = (29) (301) = 8729 Hence sum of all numbers between 200 to 400 which are divisible by 7 is 8729.