


Miscellaneous
Misc 2
Misc 3 Important
Misc 4 You are here
Misc 5
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9
Misc 10 Important
Misc 11
Misc 12
Misc 13
Misc 14 Important
Misc 15
Misc 16 Important
Misc 17
Misc 18
Misc 19 Important
Misc 20
Misc 21 (i) Important
Misc 21 (ii)
Misc 22 Important
Misc 23 Important
Misc 24 Deleted for CBSE Board 2022 Exams
Misc 25 Important Deleted for CBSE Board 2022 Exams
Misc 26 Deleted for CBSE Board 2022 Exams
Misc 27
Misc 28 Important
Misc 29 Important
Misc 30
Misc 31 Important
Misc 32 Important
Misc 4 Find the sum of all numbers between 200 and 400 which are divisible by 7. Numbers between 200 & 400 are 201, 202,203,… ,398,399 Finding minimum number in 201, 202,203,… ,398,399 which is divisible by 7 201/7 = 285/7 202/7 = 286/7 203/7 = 29 So the series will start from 203 Finding maximum number 201, 202,203,… ,398,399 by 7 399/7 = 57 So the series will end at 399 So, series will start from 203 and end at 399 Thus, all natural number between 200 & 400 which are divisible by 7 are 203, 210, 217, … 392, 399 This sequence forms an A.P. as difference between the consecutive terms is constant. Here first term a = 203 Common difference d = 210 – 203 & last term = l = 399 First we need to find number of terms, i.e. n We know that an = a + (n – 1)d where an = nth term , n = number of terms, a = first term , d = common difference Here, an = last term = l = 399 , a = 203 , d = 7 Putting values 399 = 203 + (n –1) 7 399 – 203 = (n –1) 7 196 = (n –1)7 196/7 = (n –1) 28 = n –1 28 + 1 = n 29 = n n = 29 For finding sum, we use the formula Sn = n/2 [a + l] Here, n = 29 , l = 399& a = 203 S29 = 29/2 (203 + 399) = 29/2 (602) = (29) (301) = 8729 Hence sum of all numbers between 200 to 400 which are divisible by 7 is 8729.