




Miscellaneous
Misc 2
Misc 3 Important
Misc 4
Misc 5
Misc 6 Important
Misc 7 Important
Misc 8
Misc 9
Misc 10 Important
Misc 11
Misc 12
Misc 13
Misc 14 Important
Misc 15 You are here
Misc 16 Important
Misc 17
Misc 18
Misc 19 Important
Misc 20
Misc 21 (i) Important
Misc 21 (ii)
Misc 22 Important
Misc 23 Important
Misc 24 Deleted for CBSE Board 2022 Exams
Misc 25 Important Deleted for CBSE Board 2022 Exams
Misc 26 Deleted for CBSE Board 2022 Exams
Misc 27
Misc 28 Important
Misc 29 Important
Misc 30
Misc 31 Important
Misc 32 Important
Last updated at May 29, 2018 by Teachoo
Misc 15 The pth, qth and rth terms of an A.P. are a, b, c respectively. Show that (q r) a+(r p)b+ (p q) c = 0 Here we have small a in the equation, so we use capital A for first term We know that, An = A + (n 1) D where An is the nth term of A.P. n is the number of terms A is the first term, D is the common difference It is given that pth term of an AP is a i.e. Ap = a Putting n = p A + (p 1) D = a a = A + (p 1)D qth term of an AP is b i.e. Aq = b Putting n = q A + (q 1)D = b b = A + (q 1)D rth term of an AP is c i.e. Ar = c Putting n = r A + (r 1)D = c c = A + (r 1)D Now we need to show that (q r)a + (r p)b + (p q)c = 0 We have a = A + (p 1)D Multiplying by (q r) a (q r) = [A + (p 1)D] (q r) a (q r) = [A (q r) + (q r) (p 1)D] And b = [A + (q 1)D] Multiplying by (r p) b (r p) = [A + (q 1)D] (r p) b (r p) = [A (r p) + (q r) (q 1)D] Similarly, c = A + (r 1)D multiply this by (p q) c (p q) = [A + (r 1)D] (p q) c (p q) = [A (p q) + (p q) (r 1)D] We have to prove a (q r) + b (r p) + c (p q) = 0 Taking L.H.S a (q r) + b (r p) + c (p q) From (1), (2) & (3) = "[A (q r) + (q r) (p 1)D] + [A (r p) + (r p) (q 1)D]" "+ [A (p q) + (p q) (r 1)D]" = "A (q r) + A (r p) + A (p q) + (q r) (p 1)D" "+ (r p) (q 1)D + (p q) (r 1)D" = A[q r + r p + p q] + D[(q r) (p 1) + (r p) (q 1) + (p q) (r 1)] = A[p p + r r + q q] + D[q(p 1) r(p 1) + r(q 1) p(q 1) + p(r 1) q(r 1)] = A[0 + 0 + 0] + D[qp q rp + r + rq r pq + p + pr p qr + q] = 0 + D[qp pq + rq qr rp + pr + q q + r r + p p ] = 0 + D[0] = 0 = R.H.S Hence proved