



CBSE Class 12 Sample Paper for 2026 Boards
CBSE Class 12 Sample Paper for 2026 Boards
Last updated at Sept. 2, 2025 by Teachoo
Transcript
Question 26 (A) If ๐ฅ^๐ฆ=๐^(๐ฅโ๐ฆ) prove that ๐๐ฆ/๐๐ฅ=(log ๐ฅ)/((log (๐ฅ๐))^2 ) and hence find its value at ๐ฅ=๐.Given, ๐ฅ^๐ฆ=๐^(๐ฅโ๐ฆ) Taking log both sides log (๐ฅ^๐ฆ ) = log (๐^(๐ฅ โ ๐ฆ) ) ๐ฆ ร log ๐ฅ=(๐ฅโ๐ฆ) ร logโก๐ ๐ ร ๐ฅ๐จ๐ ๐=(๐โ๐) Differentiating both sides ๐ค.๐.๐ก.๐ฅ. ๐(๐ฆ.ใ logใโก๐ฅ )/๐๐ฅ=(๐(๐ฅ โ ๐ฆ))/๐๐ฅ (As ๐๐๐โก(๐^๐ )=๐ . ๐๐๐โก๐) (Since ๐๐๐โก๐=1) Using product Rule As (๐ข๐ฃ)โ = ๐ขโ๐ฃ + ๐ฃโ๐ข ๐(๐ฆ)/๐๐ฅ " ". log ๐ฅ + ๐(logโก๐ฅ )/๐๐ฅ . ๐ฆ =๐(๐ฅ)/๐๐ฅโ(๐(๐ฆ))/๐๐ฅ ๐ ๐/๐ ๐ ๐๐๐ ๐ + ๐/๐ . ๐ =๐โ๐ ๐/๐ ๐ ๐๐ฆ/๐๐ฅ log ๐ฅ + ๐ฆ/๐ฅ =1โ๐๐ฆ/๐๐ฅ ๐๐ฆ/๐๐ฅ log ๐ฅ + ๐๐ฆ/๐๐ฅ =1โ๐ฆ/๐ฅ ๐ ๐/๐ ๐ (๐๐๐ ๐+๐) =((๐ โ ๐)/๐) Since ๐ ๐ฅ๐จ๐ ๐=(๐โ๐) ๐ฆ ๐๐๐ ๐ฅ+๐ฆ=๐ฅ ๐ฅ=๐ฆ ๐๐๐ ๐ฅ+๐ฆ ๐=๐ (๐+ ๐ฅ๐จ๐ ๐) ๐๐ฆ/๐๐ฅ (๐๐๐ ๐ฅ+1) =(๐(๐ + ๐๐๐ ๐) โ ๐ฆ)/(๐(๐ + ๐๐๐ ๐)) ๐๐ฆ/๐๐ฅ (๐๐๐ ๐ฅ+1) =(๐ฆ + ๐ฆ๐๐๐ ๐ฅ โ ๐ฆ)/(๐ฆ(1 + ๐๐๐ ๐ฅ)) ๐๐ฆ/๐๐ฅ (๐๐๐ ๐ฅ+1) =( ๐ฆ๐๐๐ ๐ฅ)/(๐ฆ(1 + ๐๐๐ ๐ฅ)) ๐๐ฆ/๐๐ฅ (๐๐๐ ๐ฅ+1) =( ๐๐๐ ๐ฅ)/((1 + ๐๐๐ ๐ฅ)) ๐ ๐/๐ ๐ =( ๐๐๐ ๐)/(๐ + ๐๐๐ ๐)^๐ ๐๐ฆ/๐๐ฅ =( ๐๐๐ ๐ฅ)/(logโก๐ + ๐๐๐ ๐ฅ)^2 ๐ ๐/๐ ๐ =( ๐๐๐ ๐)/(ใ๐ฅ๐จ๐ ใโกใ(๐๐ใ))^๐ Hence proved Now, we need to find value of ๐ ๐/๐ ๐ at x = e Putting x = e in ๐ ๐/๐ ๐ ๐ ๐/๐ ๐ =( ๐๐๐ ๐)/(ใ๐ฅ๐จ๐ ใโกใ(๐ ร ๐ใ))^๐ ๐๐ฆ/๐๐ฅ =( ๐๐๐ ๐)/(ใ๐๐๐ ใโกใ(๐^2 ใ))^2 ๐๐ฆ/๐๐ฅ =( ๐๐๐ ๐)/(2 ร ใ๐๐๐ ใโก๐ )^2 ๐๐ฆ/๐๐ฅ =1/(2 ร 1)^2 ๐๐ฆ/๐๐ฅ =1/2^2 ๐ ๐/๐ ๐ =๐/๐