Slide9.JPG

Slide10.JPG
Slide11.JPG

Remove Ads

Transcript

Question 22 If 𝑦=log tan(πœ‹/4+π‘₯/2), then prove that π’…π’š/π’…π’™βˆ’π¬πžπœπ’™=𝟎 Now, 𝑦=log tan(πœ‹/4+π‘₯/2) Differentiating both sides w.r.t x d𝑦/𝑑π‘₯=(log tan(πœ‹/4+π‘₯/2))^β€² d𝑦/𝑑π‘₯=1/(tan (πœ‹/4 + π‘₯/2) ) (tan (πœ‹/4 + π‘₯/2))^β€² d𝑦/𝑑π‘₯=1/(tan (πœ‹/4 + π‘₯/2) ) Γ—sec^2⁑(πœ‹/4 + π‘₯/2) Γ— (π‘₯/2)^β€² d𝑦/𝑑π‘₯=𝟏/(𝐭𝐚𝐧 (𝝅/πŸ’ + 𝒙/𝟐) ) Γ—γ€–π¬πžπœγ€—^𝟐⁑(𝝅/πŸ’ + 𝒙/𝟐) Γ—πŸ/𝟐 d𝑦/𝑑π‘₯=cot (πœ‹/4 + π‘₯/2)Γ—sec^2⁑(πœ‹/4 + π‘₯/2) Γ—1/2 d𝑦/𝑑π‘₯=γ€–cos 〗⁑(πœ‹/4 + π‘₯/2)/sin⁑〖 (πœ‹/4 + π‘₯/2)γ€— Γ—1/cos^2⁑(πœ‹/4 + π‘₯/2) Γ—1/2 d𝑦/𝑑π‘₯=1/(𝟐 π’”π’Šπ’β‘γ€– (𝝅/πŸ’ + 𝒙/𝟐)γ€— γ€–πœπ¨π¬ 〗⁑(𝝅/πŸ’ + 𝒙/𝟐) ) Using 2 sin A cos A = sin 2A d𝑦/𝑑π‘₯=1/π’”π’Šπ’β‘γ€– 𝟐 Γ— (𝝅/πŸ’ + 𝒙/𝟐)γ€— d𝑦/𝑑π‘₯=1/π’”π’Šπ’β‘γ€– (𝝅/𝟐 +𝒙)γ€— Using π’”π’Šπ’(𝝅/𝟐 +𝜽)=𝒄𝒐𝒔 𝜽 d𝑦/𝑑π‘₯=1/(𝒄𝒐𝒔 𝒙) 𝑑𝑦/𝑑π‘₯=𝑠𝑒𝑐 π‘₯ π’…π’š/π’…π’™βˆ’π’”π’†π’„ 𝒙=𝟎 Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo