

CBSE Class 12 Sample Paper for 2026 Boards
CBSE Class 12 Sample Paper for 2026 Boards
Last updated at Sept. 2, 2025 by Teachoo
Transcript
Question 22 If π¦=log tan(π/4+π₯/2), then prove that π π/π πβπ¬πππ=π Now, π¦=log tan(π/4+π₯/2) Differentiating both sides w.r.t x dπ¦/ππ₯=(log tan(π/4+π₯/2))^β² dπ¦/ππ₯=1/(tan (π/4 + π₯/2) ) (tan (π/4 + π₯/2))^β² dπ¦/ππ₯=1/(tan (π/4 + π₯/2) ) Γsec^2β‘(π/4 + π₯/2) Γ (π₯/2)^β² dπ¦/ππ₯=π/(πππ§ (π /π + π/π) ) Γγπ¬ππγ^πβ‘(π /π + π/π) Γπ/π dπ¦/ππ₯=cot (π/4 + π₯/2)Γsec^2β‘(π/4 + π₯/2) Γ1/2 dπ¦/ππ₯=γcos γβ‘(π/4 + π₯/2)/sinβ‘γ (π/4 + π₯/2)γ Γ1/cos^2β‘(π/4 + π₯/2) Γ1/2 dπ¦/ππ₯=1/(π πππβ‘γ (π /π + π/π)γ γππ¨π¬ γβ‘(π /π + π/π) ) Using 2 sin A cos A = sin 2A dπ¦/ππ₯=1/πππβ‘γ π Γ (π /π + π/π)γ dπ¦/ππ₯=1/πππβ‘γ (π /π +π)γ Using πππ(π /π +π½)=πππ π½ dπ¦/ππ₯=1/(πππ π) ππ¦/ππ₯=π ππ π₯ π π/π πβπππ π=π Hence proved