Slide52.JPG Slide53.JPG Slide54.JPG

Share on WhatsApp

🎉 Smart choice! You just saved 2+ minutes of ads and got straight to the good stuff. That's what being a Teachoo Black member is all about.


Transcript

Question 19 Assertion (A): Value of the expression sin^(−1) (√3/2)+tan^(−1) 1−sec^(−1) (√2) is 𝜋/4. Reason (R): Principal value branch of sin^(−1) 𝑥 is [−𝜋/2,𝜋/2] and that of sec^(−1) 𝑥 is [0,𝜋]−{𝜋/2}. Select the correct answer from the options (A), (B), (C) and (D) as given below.) (A) Both (A) and (R) are true and (R) is the correct explanation of (A). (B) Both (A) and (R) are true but (R) is not the correct explanation of (A). (C) (A) is true but (R) is false. (D) (A) is false but (R) is true.Checking Assertion Assertion (A): Value of the expression sin^(−1) (√3/2)+tan^(−1) 1−sec^(−1) (√2) is 𝜋/4. Now, 𝐬𝐢𝐧⁡〖𝟔𝟎°〗=sin⁡〖𝜋/3〗=√3/2 𝐭𝐚𝐧⁡〖𝟒𝟓°〗=tan⁡〖𝜋/4〗=1 𝐬𝐞𝐜⁡〖𝟒𝟓°〗=sec⁡〖𝜋/4〗=√2 Thus, 〖𝒔𝒊𝒏〗^(−𝟏) (√𝟑/𝟐)+〖𝒕𝒂𝒏〗^(−𝟏) 𝟏−〖𝒔𝒆𝒄〗^(−𝟏) (√𝟐) = 𝜋/3+𝜋/4−𝜋/4 = 𝝅/𝟑 ≠ 𝜋/4 Thus, Assertion is False Since Assertion is false, we don’t need to check reasoning or explanation here because only Option (d) matches So, Assertion is false Reasoning is true So, the correct answer is (d)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo